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a b s t r a c t 

In this work, we have examined an array of isotherm formalisms and characterized them based on their 

relative complexities and predictive abilities with multimodal chromatography. The set of isotherm mod- 

els studied were all based on the stoichiometric displacement framework, with considerations for electro- 

static interactions, hydrophobic interactions, and thermodynamic activities. Isotherm parameters for each 

model were first determined through twenty repeated fits to a set of mAb – Capto MMC batch isotherm 

data spanning a range of loading, ionic strength, and pH as well as a set of mAb – Capto Adhere batch 

data at constant pH. The batch isotherm data were used in two ways—spanning the full range of load- 

ing or consisting of only the high concentration data points. Predictive ability was defined through the 

model’s capacity to capture prominent changes in salt gradient elution behavior with respect to pH for 

Capto MMC or unique elution patterns and yield losses with respect to gradient slope for Capto Adhere. 

In both cases, model performance was quantified using a scoring metric based on agreement in peak 

characteristics for column predictions and accuracy of fit for the batch data. These scores were evaluated 

for all twenty isotherm fits and their corresponding column predictions, thereby producing a statisti- 

cal distribution of model performances. Model complexity (number of isotherm parameters) was then 

considered through use of the Akaike information criterion (AIC) calculated from the score distributions. 

While model performance for Capto MMC benefitted substantially from removal of low protein concen- 

tration data, this was not the case for Capto Adhere; this difference was likely due to the qualitatively 

different shapes of the isotherms between the two resins. Surprisingly, the top-performing (high accuracy 

with minimal number of parameters) isotherm model was the same for both resins. The extended steric 

mass action (SMA) isotherm (containing both protein-salt and protein-protein activity terms) accurately 

captured both the pH-dependent elution behavior for Capto MMC as well as loss in protein recovery with 

increasing gradient slope for Capto Adhere. In addition, this isotherm model achieved the highest median 

score in both resin systems, despite it lacking any explicit hydrophobic stoichiometric terms. The more 

complex isotherm models, which explicitly accounted for both electrostatic and hydrophobic interaction 

stoichiometries, were ill-suited for Capto MMC and had lower AIC model likelihoods for Capto Adhere 

due to their increased complexity. Interestingly, the ability of the extended SMA isotherm to predict the 

Capto Adhere results was largely due to the protein-salt activity coefficient, as determined via isotherm 

parameter sensitivity analyses. Further, parametric studies on this parameter demonstrated that it had 

a major impact on both binding affinity and elution behavior, therein fully capturing the impact of hy- 

drophobic interactions. In summary, we were able to determine the isotherm formalisms most capable 

of consistently predicting a wide range of column behavior for both a multimodal cation-exchange and 

multimodal anion-exchange resin with high accuracy, while containing a minimized set of model param- 

eters. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Multimodal chromatographic systems have been demonstrated 

o exhibit distinct selectivity [1–4] compared to single-mode 

ystems—ion-exchange chromatography (IEC) and hydrophobic in- 

eraction chromatography (HIC)—resulting in its utility in tack- 

ing complex protein purification challenges [5–7] . This selectiv- 

ty is driven by the synergistic combination of multiple interac- 

ion types (e.g., electrostatic and hydrophobic) [ 8 , 9 ]. Electrostatic 

epulsion is expected to decrease the binding affinity with increas- 

ng salt concentration, while hydrophobic interaction is expected 

o increase binding affinity (i.e., retention) [ 10 , 11 ]. The relation- 

hip of affinity with salt concentration can be qualitatively dif- 

erent between multimodal cation-exchange (MMCEX) and multi- 

odal anion-exchange (MMAEX) resins. More specifically, MMCEX 

ypically exhibits monotonic (strictly decreasing) affinity with re- 

pect to ionic strength [12] , but can develop a U-shape pattern 

t very high salt concentrations ( ∼ 2 M NaCl) and low pH (near 

he pKa of the resin) [13] . In contrast, MMAEX can see the tran-

ition to a hydrophobically-dominated regime at much lower salt 

oncentrations at pHs near the isoelectric point (pI) of the pro- 

ein [ 14 , 15 ]. At pHs below the pI, increased electrostatic repulsion

educes binding strength at low ionic strength; however, at high 

onic strength, increased hydrophobic interactions can again pro- 

ote binding [16] . It is worth noting that these two scenarios for 

MAEX are akin to those seen in hydrophobic interaction chro- 

atography (HIC) [ 17 , 18 ]. 

While U-shaped retention trends have been shown to exist in 

MAEX systems, the impact that they have on column elution be- 

avior under nonlinear adsorption conditions has not been well- 

haracterized [19] . Fortunately, elution behavior under U-shaped 

inding conditions in HIC have been characterized by Creasy et al. 

 20 , 21 ] for lysozyme and two mAbs with elution using ammonium

ulfate. These studies illustrated that the U-shaped trend in bind- 

ng affinity is associated with elution recovery losses. Importantly, 

ecovery was shown to be dependent on gradient slope which led 

o the definition of a critical gradient slope—where additional in- 

reases in slope further decrease recovery. This phenomenon arises 

rom the salt gradient moving too quickly in reference to the veloc- 

ty of the protein, resulting in desorption and subsequent adsorp- 

ion (re-binding) of the protein along the column axial coordinate. 

n other words, the protein must “see” the salt concentration of the 

-shape minima long enough (according to the chromatographic 

elocity of the protein) to complete elution and maximize recovery. 

hile this finding has not yet been shown for multimodal resins, 

t is plausible that similar behavior could occur. 

Despite this gap in the understanding of multimodal systems, 

nvestigations have identified crucial considerations for practical 

se of multimodal ligands, which may increase the difficulty of 

rocess development [ 22 , 23 ]. These include the presence of broad 

lution peaks and associated losses in protein recovery [ 19 , 24–26 ]

aused by the inordinate impact of hydrophobic interactions. Cer- 

ain advantages of multimodal systems can even lead to problem- 

tic scenarios. For instance, the prominent pH sensitivity of multi- 

odal provides a valuable handle for tuning its performance [27–

9] but also can decrease process robustness if deviations in pH 

ccur (e.g., improper buffer preparation). Naturally, it is critical to 

nderstand these behaviors and to employ methods that can shed 

ight on them. To this end, column modeling has been shown to 

e a useful tool for imparting process understanding [ 30 , 31 ]. 

In the space of protein chromatography modeling, ion-exchange 

hromatography (IEC) is arguably the most well-studied [32] . Most 

ffort s in this space have been directed towards prediction of pro- 

ein elution behavior, which is critical for preparative applications. 

he adsorption isotherm is at the heart of understanding protein 

lution and has thus been the focus of most column modeling ef- 
2

orts. There are a variety of adsorption isotherms that can be used 

o predict protein elution with the most common being the steric 

ass action (SMA) isotherm [33] . 

While the SMA isotherm has been used extensively for mod- 

ling CEX, it has also been applied successfully for modeling of 

ultimodal cation-exchange (MMCEX) [ 26 , 34 , 35 ] and multimodal 

nion-exchange (MMAEX) [ 19 , 36 , 37 ]. This application is in appar-

nt contrast to the nature of multimodal interactions, which in- 

olve both charged and hydrophobic components. Taking a more 

rst-principles-based approach would lead one to think that an 

sotherm formalism describing both types of interactions would 

e more appropriate for modeling multimodal chromatography. 

o this end, isotherm formalisms of increased complexity have 

een used to model MMCEX [ 35 , 38 , 39 ] and multimodal anion-

xchange (MMAEX) behavior [30] . Two noteworthy isotherm mod- 

ls are those developed by Nfor et al. [12] and Lee et al. [16] .

oth isotherm models included stoichiometric terms for electro- 

tatic and hydrophobic interactions as well as thermodynamic ac- 

ivities for protein-protein interactions and protein-salt interac- 

ions. The model from Lee et al. [16] also included a stoichiomet- 

ic term for water displaced during hydrophobic interactions. Nfor 

t al. [12] showed that batch isotherm data for MMAEX resins and 

arious model proteins containing U-shaped trends could be fit ef- 

ectively. Column simulations for a small set of the proteins and 

MAEX resins studied were also performed [30] , however these 

ere limited to very low column loadings where the elution pro- 

les were well-behaved. Lee et al. [16] successfully applied it to 

redicting mAb retention with U-shape trends in isocratic experi- 

ents performed at a range of pH conditions. This application was 

lso limited to the linear adsorption regime and thus did not char- 

cterize the mechanistic model’s ability to predict elution behavior 

nder nonlinear loading conditions. While some mechanistic mod- 

ls have been developed for multimodal chromatographic systems, 

heir application has been mostly limited to prediction of column 

ehavior under linear adsorption conditions. Further, no studies 

to the best of the authors’ knowledge) have demonstrated that 

he complex elution behavior, under nonlinear adsorption condi- 

ions, in multimodal systems—stemming from isotherms with U- 

haped affinity vs. ionic strength trends—have been predicted with 

 mechanistic isotherm model. 

It is important to note that while these isotherm formalisms 

etter describe the interactions present in multimodal systems 

ompared to SMA, their complexity results in them having many 

arameters which can make them more cumbersome to employ. 

ore specifically, having larger sets of model parameters is tied 

o challenges in parameter identifiability, namely the ability to re- 

iably determine parameter values [ 40 , 41 ]. For example, parame- 

er values obtained from fitting a complex model to experimental 

ata may vary substantially without influencing the quality of the 

t [42] . This issue can become obvious when applying the model 

owards extrapolated conditions where poorly-determined model 

arameters may produce inaccurate predictions [43] . Further, the 

omputational expense of parameter estimation increases with the 

umber of parameters which can be particularly problematic for 

xpensive objective functions such as those required for inverse 

tting of chromatographic profiles [44] . Overall, it is preferable to 

mploy models of reduced complexity that can achieve the same 

evel of predictive accuracy as more complex models. 

Recent work has been done to deploy simplified models for 

ultimodal chromatography. Importantly, Hess et al. [45] illus- 

rated that the electrostatic terms in the isotherm construction can 

e effectively ignored when the system (MMAEX, in this case) at 

Hs far below the protein isoelectric point, contains minimal con- 

ributions from electrostatic interactions. In this regime, the rela- 

ionship of binding affinity with respect to salt concentration is ex- 

ected to be monotonically increasing; as such, it is reasonable to 
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ssume a functional form that only considers hydrophobic interac- 

ions. Hahn et al. [46] also focused on MMAEX, however the fo- 

us was centered around modeling of pH-based elution instead of 

alt. Here, the colloidal particle adsorption (CPA) model [ 47 , 48 ] was

xtended with the asymmetric activity coefficient from Mollerup’s 

hermodynamic framework [49–52] , specifically with the protein- 

alt activity term. This model, while not containing any stoichio- 

etric hydrophobic terms, was able to capture the elution behavior 

or a MMAEX resin with respect to a wide range of pH conditions 

nd a narrow range of salt conditions for high protein loadings. 

owever, this investigation did not identify if their model would 

apture elution behavior under a broad range of salt conditions 

here U-shape binding trends may be present. 

This study aims to address the question: is it necessary to use 

omplex isotherm models that account for the full scope of in- 

eractions in multimodal chromatography, or can simpler mod- 

ls reasonably be employed? We addressed this with a rigorous 

nalysis of isotherm model performance for formalisms of vary- 

ng complexity. Model parameters for several isotherm formalisms 

ere determined from fitting batch data for both the MMCEX resin 

apto MMC and the MMAEX resin Capto Adhere performed at 

 range of mobile phase conditions and protein loadings. These 

sotherm models were then used in concert with the general rate 

odel to predict column elution behavior in salt gradients at sev- 

ral pHs for Capto MMC, where the effect of pH on elution peak 

haracteristics was substantial. Additionally, these isotherm for- 

alisms were employed to predict unique elution behavior for 

apto Adhere, where losses in protein recovery increased with re- 

pect to increasing gradient slope. The abilities of these models to 

t the batch data and to predict the column profiles were then 

ompared both visually (agreement with experimental data) and 

uantitatively (assessment of a novel score metric). Lastly, the im- 

act of model complexity was investigated through assessment of 

rediction robustness, information criteria, sensitivity analyses, and 

arametric studies. 

. Theory 

.1. General rate model of chromatography 

The general rate model (GRM) [ 32 , 53 , 54 ] has been widely em-

loyed in column modeling and is briefly summarized here. It con- 

ains two differential balances that, overall, capture the change in 

oncentration of protein over time t moving along the column, 

ith column (interstitial) porosity ε e , at distance x and into the 

esin particle, with bead (intraparticle) porosity ε p , at position r. 

q. (1) describes the fluid phase (interstitial) concentration c i of 

rotein i with interstitial velocity u int , axial dispersion D ax , and rate 

f mass transfer to the resin surface k f ilm,i . 

∂c i 
∂t 

= −u int 

∂c i 
∂x 

+ D ax 
∂ 2 c i 
∂x 2 

− 1 − ε e 
ε e 

3 

r p 
k film ,i 

[
c i − c p,i ( x, t, r p ) 

]
for t ≥ 0 and x ∈ [ 0 , L ] (1) 

Eq. (2) describes the fluid phase concentration c p,i of protein 

 in the pore volume and solid phase (adsorbed) concentration q i 
ith effective pore diffusivity D p,i . 

∂c p,i 

∂t 
= D p,i 

(
∂ 2 c p,i 

∂r 2 
+ 

2 

r 

∂c p,i 

∂r 

)
− 1 − ε p 

ε p 

∂q i 
∂t 

for t ≥ 0 , x ∈ [ 0 , L ] , and r ∈ [ 0 , r p ] (2) 

Further, the GRM contains a transient q i term to characterize 

he adsorption and desorption process via the adsorption isotherm 

odel. Specifics on the adsorption isotherm formalism are dis- 

ussed in Section 2.2 . The model is completed by applying the 
3 
anckwerts boundary conditions Eqs. (3) and (4) 

∂c i 
∂x 

( 0 , t ) = 

u int 

D ax 
[ c i ( 0 , t ) − c in ,i ( t ) ] for t ≥ 0 (3) 

∂c i 
∂x 

( L, t ) = 0 for t ≥ 0 (4) 

t the column inlet and outlet, respectively, to Eq. (1) and the ra- 

ial boundary conditions Eqs. (5) and ( 6 ) 

 film ,i 

[
c i − c p,i ( x, t, r p ) 

]
= ε p D p,i 

∂c p,i 

∂r 
( x, t, r p ) 

for t ≥ 0 and x ∈ [ 0 , L ] (5) 

∂c p,i 

∂r 
( x, t, 0 ) = 0 for t ≥ 0 and x ∈ [ 0 , L ] (6) 

o Eq. (2) . These account for mass conservation at the resin surface 

nd for symmetry at its center, respectively. 

.2. Adsorption isotherm models 

The ion-exchange mechanism from which the steric mass action 

SMA) [33] isotherm is constructed is shown in Eq. (7) , 

 + νSL ± � P L ±ν + νS (7) 

here a protein P displaces ν salt counterions S to form the 

rotein-ligand complex P L ±v . The SMA isotherm in its kinetic form 

s shown in Eq. (8) , 

 kin ,i 

∂q i 
∂t 

= K eq ,i 

[ 

� −
k ∑ 

j=1 

(
ν j + σ j 

)
q j 

] v i 

c p,i − c νi 
s q i (8) 

here k kin,i is a kinetic rate constant (inverse of the desorption 

ate) as described by Huuk et al. [ 55 , 56 ], K eq,i is the equilibrium

onstant for protein component i , νi is its characteristic charge 

number of stoichiometric charged binding sites), c p,i is its con- 

entration, and c s is the concentration of the salt counterion. Fur- 

her, � is the ionic capacity of the resin and σ is the steric fac- 

or ( σi referring to the i th kinetic equation and σ j referring to the 

j th protein in each equation) representing the average number of 

hielded counterions, at charged binding sites, by an adsorbed pro- 

ein molecule. Multicomponent effects are included here by explic- 

tly accounting for each protein component j , out of all protein 

omponents k , that compete for the available binding sites. The 

MA model can be extended to include an empirical pH depen- 

ence [57] , where K eq,i is assumed to be an exponential function 

f pH in Eq. (9) 

 eq ,i = K eq 0 ,i exp 

[
K eq 1 ,i 

(
pH − pH ref 

)]
(9) 

nd νi is assumed to be a linear function of pH in Eq. (10) . 

i = ν0 ,i + ν1 ,i 

(
pH − pH ref 

)
(10) 

ere, a reference pH pH ref is provided to allow for scaling of the 

H-dependent isotherm parameters for convenience. While these 

unctional forms are empirical in nature, it is worth noting that 

hey have some physical basis due to the pH-dependent changes 

n protein surface charge, due to titration. It is also worth men- 

ioning that these pH-dependencies have been applied success- 

ully in modeling of ion-exchange systems [57–60] . In addition 

o the pH modification, the SMA model can be further extended 

y applying the asymmetric activity coefficient from Mollerup’s 

hermodynamic framework [49–52] to obtain the generalized ion- 

xchange (GIEX) isotherm [61] , referred to as the SMA Extended 

Ext.) isotherm in this work. This model, in its kinetic form, is 

hown in Eq. (11) , 

 kin ,i 

∂q i 
∂t 

= K eq ,i ̃  γi 

[ 

� −
k ∑ 

j=1 

(
ν j + σ j 

)
q j 

] v i 

c p,i − c νi 
s q i (11) 
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here the thermodynamic activity terms K s,i (protein-salt interac- 

ion) and K p,i (protein-protein interaction) for protein i are intro- 

uced through a modified activity coefficient ˜ γi in Eq. (12) . 

˜ i = 

γi 

γ ∞ ,ω 
≈ exp 

(
K p,i c p,i + K s,i c s 

)
(12) 

ere, γ ∞ ,ω 
i 

is the activity coefficient of the protein in water at infi- 

ite dilution and is assumed to be unity. The remaining parameters 

ere are identical to those in the unmodified SMA model. Another 

odel, called SMA K s , has the same form as SMA Ext., however the

 p parameter is unused (set to zero). It worth noting that while 

 s,i and K p,i are also pH-dependent [52] , explicit inclusion of pH in 

ts formulation was avoided in order to avoid redundancy with the 

H-dependent K eq,i term. 

In consideration of the mixed-mode exchange reaction Eq. (13) 

 + vS L ± + nL � P L ±v L n + vS (13) 

rotein P displaces ν salt counterions S while simultaneously inter- 

cting with n hydrophobic ligands to form the protein-ligand com- 

lex P L ±v L n . Further, the kinetic form of the isotherm representing 

his exchange is shown in Eq. (14) , 

 kin ,i 

∂q i 
∂t 

= K eq ,i ̃  γi 

[ 

� −
k ∑ 

j=1 

(
ν j + σ j 

)
q j 

] v i 

×
[ 

� −
k ∑ 

j=1 

(
n j + s j 

)
q j 

] n i 

c p,i − c νi 
s q i (14) 

hich is identical to the isotherm derived by Nfor et al. [12] . This

odel is similar to the SMA model in its functional form, although 

ith added components to account for the stoichiometry of hy- 

rophobic interactions n i (analogous to νi ) and the steric shield- 

ng parameter of hydrophobic interactions s ( s i referring to the i th 

inetic equation and s j referring to the j th protein in each equa- 

ion) which is analogous to σ . This isotherm formalism will be re- 

erred to as the Ottens isotherm for the remainder of this work, 

ith a thermodynamic extension analogous to the SMA Ext. model, 

ubbed Ottens Ext. With respect to the model’s pH dependence, a 

imilar extension can be applied with the addition of n i also being 

 linear function of pH in Eq. (15) . 

 i = n 0 ,i + n 1 ,i 

(
pH − pH ref 

)
(15) 

It is worth noting here that the ionic capacities of charged and 

ydrophobic sites ( �IEC and �HIC , respectively) are assumed to be 

dentical ( �IEC = �HIC ) , which is a reasonable assumption [ 12 , 46 ]

f the resin chemistry has a 1:1 ratio of charged to hydrophobic 

roups. This assumption implies that if νi = n i and σi = s i , the sat-

ration capacity for electrostatic interactions q IEC 
max,i 

and the satu- 

ation capacity for hydrophobic interactions q HIC 
max,i 

must be equal 

o one another (i.e., q IEC 
max ,i 

= �IEC / [ νi + σi ] = �HIC / [ n i + s i ] = q HIC 
max ,i 

).

owever, when these isotherm parameters are not equal, different 

aturation capacities arise between the two modes. As outlined by 

ahn et al. [46] , this challenges the assumption of simultaneous 

inding and, therein, suggests that true saturation capacity is some 

ombination of q IEC 
max,i 

and q IEC 
max,i 

. 

Another isotherm that can be used for modeling of multimodal 

hromatography is the SMA/HIC hybrid isotherm. This isotherm 

an be obtained by conjoining the hydrophobic interaction chro- 

atography (HIC) isotherm presented by Wang et al. [62] with the 

MA Ext. isotherm, in a similar manner as shown for the Ottens 

sotherm, and is similar to the model presented by Lee et al. [16] .

he main difference between the SMA/HIC model and the Ottens 

odel is the addition of the β term, which refers to the stoichio- 

etric number of bulk-like water molecules W that are released 
4 
o form the protein-ligand complex P L ±v L n with respect to the hy- 

rophobic component of the multimodal interaction Eq. (16) . 

 + vS L ± + nL W β � P L ±v L n + vS + nβW (16) 

From here, the corresponding isotherm formalism, presented in 

ts kinetic form, is shown in Eq. (17) . 

 kin ,i 

∂q i 
∂t 

= K eq ,i ̃  γi 

[ 

� −
k ∑ 

j=1 

(
ν j + σ j 

)
q j 

] v i 

×
[ 

� −
k ∑ 

j=1 

(
n j + s j 

)
q j 

] n i 

c p,i − c νi 
s q 

1+ n i βi 

i 
(17) 

The βi term is determined by the value of β0 ,i and its exponen- 

ial salt dependence, scaled with β1 ,i [62] in Eq. (18) . 

i = β0 ,i exp ( β1 ,i c s ) (18) 

With respect to the extensions to this model, the same pH and 

hermodynamic extensions that were used for the Ottens isotherm 

ormalism can be applied for the SMA/HIC model. Accordingly, the 

MA/HIC variant containing the modified activity coefficient will 

e referred to as the SMA/HIC Ext. isotherm. All these models can 

e represented in the equilibrium form, used to fit batch data, 

y setting the left-hand side of the equation to zero. The kinetic 

orms of these models, as shown, are useful for column simula- 

ions where they can be directly applied to the GRM. Importantly, 

hese forms all include the rate constant k kin,i , which cannot be ob- 

ained from fitting batch data at equilibrium and was thus set to 

nity for all of the models in this investigation. Lastly, derivations 

or these isotherm models are provided in SI.1 (Word document). 

. Material and methods 

.1. Materials 

Sodium chloride, sodium acetate trihydrate, acetic acid, tris 

ase, tris hydrochloride, sodium hydroxide, hydrochloric acid, 

odium azide, and 10 kDa centrifugal filter units were purchased 

rom MilliporeSigma (St. Louis, MO). MAb A (protein A eluate), 

ith an isoelectric point of 8.7, was generously donated by Genen- 

ech (South San Francisco, CA). MAb B (protein A eluate), with 

n isoelectric point of 8.0, was generously donated by Merck & 

o., Inc. (Rahway, NJ). Pre-packed OPUS® 1 ml (0.5 cm x 5 cm) 

iniChrom Capto MMC and Capto Adhere columns were gra- 

iously provided by Repligen (Waltham, MA). HiPrep 26/10 de- 

alting columns were purchased from Cytiva (Malborough, MA). 

.2 μm bottle top vacuum filters, 0.2 μm PES syringe filters, and 

uerlock syringes (10 ml and 30 ml) were purchased from VWR 

Randor, PA). 

.2. Chemicals and buffers 

Buffers for the Capto MMC column experiments were prepared 

sing 20 mM sodium acetate (equilibration buffer) with or with- 

ut 1.5 M NaCl (elution buffer) at pH 5.3, 5.5, 5.6, 5.9, and 6.2 

ontaining 0.02% (w/w) sodium azide (preservative). Buffers for the 

apto Adhere column experiments were prepared using 55 mM tris 

equilibration buffer) with or without 1 M NaOAc (elution buffer) 

t pH 8 containing 0.02% (w/w) sodium azide (preservative). Ad- 

ustments on buffer pH were performed, if necessary, with the ad- 

ition of 6 M NaOH or 6 M HCl until the exact pH was obtained.

uffers for the batch experiments were prepared in an equivalent 

anner, except different pHs for Capto MMC (5, 5.25, 5.5, and 6). 

ll buffers were 0.2 μm filtered following their preparation. 
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.3. mAb sample preparation 

Buffer exchange of the mAb A for the Capto MMC batch ex- 

eriments was performed using 10 kDa centrifugal filter units at 

0 0 0 rpm until completion. mAb B was prepared for the Capto Ad- 

ere batch experiments by diluting it with buffer stocks to reach 

he desired fluid composition. Buffer exchange of the mAb A for 

he Capto MMC column experiments was performed using a Cytiva 

iPrep desalting column into pH 5.5 acetate buffer (20 mM) con- 

aining 75 mM NaCl. mAb B was exchanged into pH 8 tris buffer 

55 mM) containing 50 mM NaOAc for the Capto Adhere column 

uns. Buffer exchanged mAbs were measured for their absorbance 

n a NanoDrop UV spectrophotometer, converted to concentration 

sing a calibration curve, and then diluted to a concentration of 

 mg/ml for mAb A and to 4 mg/ml for mAb B. 

.4. Batch adsorption experiments 

Batch isotherm data were generated on a TECAN 

TM EVO 200 us- 

ng the Capto MMC resin with mAb A and Capto Adhere resin with 

Ab B. Resin slurry (50% v/v) was dispensed into 96-well plates 

sing the robotic liquid-handling system and incubated with pre- 

iously buffer exchanged mAb (varying pH and salt concentration) 

t protein fluid phase concentrations up to 6.67 mg/ml for mAb A 

nd 1.67 mg/ml for mAb B. Incubation was performed for 60 min 

ith shaking at 1100 rpm or 1250 rpm. Sodium acetate (20 mM) 

as used as the base buffering com ponent between pH 5 and 6 

pH 5, 5.25, 5.5 and 6) with sodium chloride concentrations rang- 

ng from 20 mM to 650 mM for mAb A. Tris (55 mM) at pH 8

as used as the buffer with sodium acetate concentrations rang- 

ng from 50 mM to 650 mM sodium acetate for mAb B. Load den-

ities (mass of protein incubated per volume resin) between 5 and 

60 mg/ml were used to generate isotherms at each mobile phase 

ondition, resulting in 4–7 points per isotherm. Resin volume in 

apto MMC batch experiments was adjusted to allow for higher 

esin loading, with the smallest amount of resin used being 12.5 

l and the fluid phase being consistently 300 ul (liquid/solid vol- 

me phase ratio of 24). Resin volume in Capto Adhere batch exper- 

ments was also adjusted to allow for loadings, with the smallest 

mount of resin used being 2.5 ul and the fluid phase being consis- 

ently 240 ul (liquid/solid volume phase ratio of 96). Reproducibil- 

ty of the batch experiments was validated by performing several 

igh loading conditions in duplicate. MAb solid phase concentra- 

ion q p was calculated via mass balance with inclusion of hold-up 

olume effects [12] , where the resin hold-up volume was used as 

hree-fifths of the total solid phase volume (an internal heuristic). 

oncentrations were determined by either using the Lunatic TM mi- 

rofluidic system or a plate reader. Two versions of the batch data 

ere used, one including all native loadings, batch full isotherm 

BFI), and the other having removed points corresponding to the 

inear region of the isotherm, batch no linear (BNL). The linear re- 

ion was defined as all data points with mAb concentration less 

han 15% of the maximum liquid phase protein load concentration 

ithout exception. This cutoff was selected due to its consistent vi- 

ual correspondence to the initial slope of the batch data for both 

esins and mAbs. 

.5. Column linear salt gradient elution experiments 

Salt linear gradient elution (LGE) experiments were run at 

.2 ml/min on a 1 ml Capto MMC column (5 min residence time) 

nd at 0.4 ml/min on a 1 ml Capto Adhere column (2.5 min res-

dence time) using an ÄKTA Explorer 10 equipped with a 2 mm 

V flow cell. Load densities of 25 mg/ml were employed for Capto 

MC with mAb A and 20 mg/ml for Capto Adhere with mAb B. 

ach LGE experiment for Capto MMC was performed with a 20 mM 
5 
cetate buffer at a different pH (5.3, 5.6, 5.9, and 6.2) using a 30 CV

radient from 0 to 1.5 M NaCl followed by a 20 CV hold at 1.5 M

aCl and a 10 CV strip using 0.1 M tris base. Each LGE experiment 

or Capto Adhere was performed with tris buffer at different gra- 

ient lengths (5, 10, 20, and 30 CV) at pH 8 from 0 to 1 M NaOAc

ollowed by a 20 CV hold at 1 M NaOAc and a 10 CV strip using

.2 M acetic acid. In both cases the column was regenerated for 10 

V with 0.5 M NaOH and re-equilibrated with the starting buffer 

ntil constant pH was reached. Following run completion, the UV 

80 nm trace (mAU) and conductivity profile (mS/cm) were con- 

erted to units of concentration, mg/ml of mAb and molarity of 

alt counterion, respectively. 

.6. Chromatography system calibration 

Calibration curves for the UV absorbance detector were gener- 

ted using the method described by Kumar et al. [63] . First, a se-

ies of 2 ml samples, containing different concentrations of mAb A 

r mAb B between 0.5 mg/ml and 10 mg/ml, were injected into the 

KTA system. The UV response at 280 nm was fit against the sam- 

le concentration using a second-order polynomial to ensure that 

he detector nonlinearity in the higher concentration range was ac- 

ounted for. This calibration curve was later employed to convert 

he UV absorbance traces from the column experiments to units 

f concentration (mg/ml). Salt concentrations ranging from 0 M to 

.5 M NaCl in 0.1 M steps were pumped through the ÄKTA sys- 

em using each buffering system (pH 5.3, 5.6, 5.9, and 6.2). For the 

ris buffer, salt concentrations ranging from 0 M to 1 M NaOAc in 

.1 M steps were employed. Conductivity measurements were fit- 

ed against the input salt concentrations with second-order poly- 

omials for each buffering system. These calibration curves were 

sed to verify the outlet salt concentration profiles for assurance 

hat the gradients were performed as intended. Dead volume V dead 

from injection valve to UV detector) was determined via peak re- 

ention of an acetone injection (2% v/v) without the column in-line 

nd determined to be 0.16 ml. The residence time of the salt gra- 

ient mixer was calculated by dividing the mixer size (0.6 ml) by 

he flow rate used in the column experiments. This parameter was 

ater used as a simulation input to model the linear salt gradient 

ith the approach outlined by Kumar et al. [64] . 

.7. Determination of column parameters 

Interstitial and intraparticle porosities were determined using 

he retention volumes of large (2 MDa dextran) and small (ace- 

one) non-binding tracers. Ionic capacity � was calculated via col- 

mn frontal loading and elution of small, UV-responsive, mono- 

alent tracers. This method, similar to the histidine-based adsor- 

er quantification method shown by Huuk et al. [56] , was selected 

ver the traditional potentiometric titration methodology [65] in 

rder to avoid degradation of column packing that can arise dur- 

ng potentiometric titration due to the contact of deionized water 

56] . Arginine (25 mM) was instead selected as the tracer due for 

apto MMC, while 25 mM sodium nitrate was selected for Capto 

dhere. To perform the quantification, the column was first flushed 

ith 0.5 M HCl until completely equilibrated to remove all coun- 

erion species. Once the pH was stable, the respective tracer was 

ed through the column, monitored at UV 220 nm [66] for argi- 

ine and at 300 nm for nitrate [67] , until 100% breakthrough was 

eached (absorbance plateau). Ionic capacities were determined by 

ass balance using Eqs. (19) and (20) , 

 ads = m elua te − ε t V col c load − V dead c load (19) 

= 

m ads 

V col ( 1 − ε t ) 
(20) 
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Table 1 

Values for column and resin parameters for Capto MMC. Values marked with a 

were taken from Zhu and Carta [68] . Values marked with b were taken from 

Roberts et al. [69] . 

ε e [ −] ε p [ −] � [M] d p [ μm ] r pore [ nm ] 

Capto MMC 0.37 0.916 1.513 85 a 32 a 

Capto Adhere 0.40 0.913 2.153 75 b 36 b 
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here the mass of adsorbed tracer m ads was calculated from the 

ifference between the mass of tracer in the eluate m eluate and the 

ass held up in the column. Here, ε t represents the total poros- 

ty of the column. Mass of tracer in the eluate was calculated from 

ntegration of the elution peak with absorbance converted to mass 

ased on the known load concentration c load and the absorbance 

f the breakthrough plateau, assumed to correspond to c load . Ionic 

apacities were then calculated by dividing the mass of adsorbed 

racer by the equivalent solid phase volume and agreed with the 

anges (accounting for ε t ) provided by the manufacturer for both 

esins. Finally, values of particle diameter and pore size, used for 

ransport parameter correlations, were gathered from the litera- 

ure [ 68 , 69 ]. Values for porosity, ionic capacity, particle diameter 

 p , and pore size r pore are shown in Table 1 . 

.8. Isotherm parameter fitting 

Isotherm parameter fitting was performed using IsoFit ( https:// 

ithub.com/alters9595/IsoFit ), an open-source MATLAB-based soft- 

are package for fitting of batch adsorption data developed re- 

ently by our group. This software allows for modular input of 

atch isotherm data (either single component or multicomponent) 

long with selection of a wide array of isotherm formalisms and 

ther settings to help expedite the fitting process. After running 

he script for the primary module, all parameters are simulta- 

eously regressed from the batch data using global optimization. 

pon completion, goodness-of-fit statistics are calculated and pro- 

ided to the user along with plots of the fitted isotherm data. IsoFit 

s free to use, and the reader is encouraged to use it for their 

wn purposes. The software was coupled with a parallel temper- 

ng global optimization algorithm [70] , code graciously provided 

y the University of Delaware, to perform fits. Batch isotherm data 

ere collated in Microsoft® Excel® datasheets and imported into 

ATLAB® 2021a. The fitting was performed using a 16-core Ryzen 

950X processor (AMD®). Solid phase concentrations were con- 

erted into units per stationary phase volume by dividing by (1 

total porosity ε t ). This conversion was made to provide consis- 

ency in units of the equilibrium isotherm equations and the col- 

mn simulations discussed in Section 3.10 [30] . Isotherm equations 

ere assembled by converting them to their equilibrium form (set- 

ing left hand side to zero) and solved using the fsolve func- 

ion (nonlinear function solver) in MATLAB. Isotherm parameters 

ere determined via fitting to the mAb A – Capto MMC or mAb 

 – Capto Adhere batch data across all pH and salt concentra- 

ions simultaneously. Fitting was repeated twenty times for each 

sotherm formalism described in Section 2.2 to obtain a distribu- 

ion of isotherm parameters for each model. Since the global opti- 

ization techniques employed in this study are non-deterministic 

result depends on the random seed), the repeated fits (repeats) 

ere necessary in order to provide confidence in the regressed 

sotherm parameters—the values of the parameters were differ- 

nt for each repeat. Fits were done for the entire range of load- 

ng, batch full isotherm (BFI), in addition to a constrained dataset 

here the points in the linear region of the isotherm, where liq- 

id phase concentration was less than 15% of the maximum liq- 

id phase load concentration, were removed, batch no linear (BNL). 

eference pH values were set to 5.5 for Capto MMC to provide con- 
6 
istent scaling of the pH-dependent isotherm parameters. MAb B 

nd Capto Adhere was only modeled at pH 8, so the pH-dependent 

sotherm parameters were not included. 

Objective functions were calculated from the normalized root- 

ean-square error (NRMSE) between the simulated solid phase 

oncentration q k,sim 

and the corresponding experimental value 

 k,exp for the k th data point in the batch dataset. The objective 

unction was then scaled by an empirically determined weighting 

oefficient W k of 0.05 to yield an initial objective value close to 

nity, which was helpful for consistency in optimizer convergence. 

o prevent uneven weighting of any mobile phase condition (salt 

oncentration at a given pH), due to each condition not necessar- 

ly having an equal number of data points, an additional weighting 

cheme, incorporated into W k , was imposed to scale the weight of 

ach data point by the total number of data points per each mo- 

ile phase condition. The overall objective function formulation is 

hown in Eq. (21) , 

ˆ = arg min 

θ

( 

1 

N 

N ∑ 

k =1 

W k 

(
q k,sim 

− q k,exp 

)2 

) 

(21) 

here ˆ θ is a given set of isotherm parameters and N is the num- 

er of data points. To expedite the fitting routine, simulated solid 

hase concentrations were calculated in parallel, using the Parallel 

omputing Toolbox TM in MATLAB (parfor function), before assem- 

ly into the overall objective value. Parameter bounds and initial 

uesses of each parameter value were given as additional inputs 

nto the optimization routine. The parallel tempering algorithm 

as found to be highly robust with respect to parameter bounds 

nd initial guess values, i.e., it was able to reach similar objective 

inima regardless of initial guess in a specified parameter search 

ange. Optimization trajectories were populated in real-time and 

ntermittently monitored to ensure progression. Isotherm fits (for 

hose shown in this paper as well as those not shown) for both 

esins are provided in the supplementary material Excel datasheet. 

.9. Estimation of transport parameters 

A key component of the column simulations was the input of 

ransport parameters. The full GRM requires input of D ax , k f ilm 

, 

D p , and D s for protein and salt components. D ax was calculated 

sing Eq. (22) [53] , 

 ax = HETP 

u 

2 ε e 
(22) 

here the height-equivalent theoretical plates ( HETP ) were deter- 

ined from peak area integration of the dextran UV trace, dis- 

ussed in Section 3.7 . D ax was also calculated from the Péclet 

umber (to provide a comparison with HETP-derived values), es- 

imated using the correlation provided by Rastegar and Gu [71] , 

hich yielded a similar value to that obtained from the dextran 

eak. k f ilm 

was estimated using the Wilson-Geankopolis correla- 

ion Eq. (23) [72] . 

h = 

1 . 09 

ε e 
Re 0 . 33 Sc 0 . 33 (23) 

ere, Sh , Re , and Sc refer to the Sherwood, Reynolds, and Schmidt 

imensionless numbers, respectively, shown in Eq. (24) . 

h = 

k film 

d p 

D 0 

, Re = 

ρud p 

η
, and Sc = 

η

ρD 0 

(24) 

Determination of the dimensionless terms requires input of the 

article diameter d p , molecular diffusivity D 0 , fluid viscosity η, 

nd density ρ . D 0 was calculated using the Stokes-Einstein equa- 

ion and effective pore diffusivity D p of mAb was estimated using 

q. (25) [73] . 

 p = 

ε p D 0 

τp 
ψ p (25) 

https://github.com/alters9595/IsoFit
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Table 2 

Values for transport parameters of NaCl and mAb A with Capto MMC, NaCl and mAb B with Capto Adhere. 

NaCl mAb A / mAb B 

D ax [ mm 

2 / s ] k f ilm [ mm / s ] D p [ mm 

2 / s ] k f ilm [ mm / s ] D p [ mm 

2 / s ] 

Capto MMC 0.3142 0.1035 9.461 × 10 −4 1.159 × 10 −2 8.240 × 10 −6 

Capto Adhere 0.2627 0.1213 9.358 × 10 −4 1.358 × 10 −2 2.840 × 10 −5 
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ere, τp is the resin pore tortuosity, whose value is uncertain but 

anges between two and six [74] , and was thus set to four. Fur-

her, ψ p is the diffusional hindrance coefficient which was calcu- 

ated using Eqs. (26) and (27) [ 75 , 76 ], 

 p = ( 1 − λm 

) 
−2 

(
1 + 

9 

8 

λm 

ln λm 

− 1 . 539 λm 

)
for λm 

< 0 . 2 (26) 

 p = 0 . 865 ( 1 − λm 

) 
2 
(
1 − 2 . 1044 λm 

+ 2 . 089 λ3 
m 

− 0 . 984 λ5 
m 

)
for λm 

> 0 . 2 (27) 

epending on the value of λm 

, calculated via λm 

= r mAb /r pore . MAb 

ydrodynamic radius r mAb was set to 4.5 nm [77] . D p for NaCl was

nstead estimated using the Mackie-Meares correlation Eq. (28) , 

 p = 

[
ε p 

2 − ε p 

]2 

D 0 (28) 

hich is valid for small solutes [54] . 

Once all transport parameters had been estimated, an inves- 

igative approach was taken to ascertain their suitability for the 

GE experiments with column simulations, approach outlined in 

ection 3.10 , using the fitted isotherm parameters. To this end, 

rief column simulation sampling routines for k f ilm 

, D ax , and D p 

ere performed for each isotherm model using the isotherm pa- 

ameters resulting from their best fits to the batch data. The val- 

es of these transport parameters obtained from the correlations 

ere used as initial guesses and a search space within an order 

f magnitude was utilized along with a simulated annealing al- 

orithm. Fast convergence (less than a hundred iterations) of this 

lgorithm allowed for relatively quick estimates of each transport 

arameter while gaining insight on their relative influence to the 

olumn simulations. k f ilm 

and D ax were found to be minimally im- 

actful on the simulated profiles, while D p had a substantial effect 

or every isotherm model. This observation is consistent with the 

ell-known heuristic that pore diffusion tends to be the limiting 

ransport mechanism for protein-resin chromatography [32] . Thus, 

he correlated values of k f ilm 

and D ax were selected while D p was 

btained via averaging of the sampled values for each model, re- 

ulting in a single universal set of transport parameters, shown in 

able 2 . Intriguingly, the D p value for Capto Adhere was roughly 3.5 

imes greater than the value for Capto MMC, despite the pore sizes 

or the stationary phases being similar [ 68 , 69 ]. The reason behind

his is speculative, but a possibility is that the lower binding affini- 

ies at low salt concentrations for Capto Adhere compared to Capto 

MC in this study could result in faster diffusion rates due to a 

reater influence of solid diffusion (intraparticle diffusion in the 

dsorbed state) [78] . It is important to note that this method of 

ransport parameter estimation serves to obviate the impact of the 

sotherm formalism, since no other parameters were changed be- 

ween simulations of the same experiment. In this way, the trans- 

ort parameters essentially acted as column model hyperparam- 

ters for each isotherm formalism. Other approaches to elucidate 

he relative contributions of the transport parameters could also 

e taken, such as using the HETP equation derived from the gen- 

ral rate model [53] . 
7

.10. Column linear gradient simulations 

Column simulations were performed using the ChromX 

TM 

GoSilico GmbH, Karlsruhe, Germany) [79] simulation software, li- 

ense graciously provided by GoSilico, using the GRM. The dis- 

retization scheme used was a linear streamline upwind Petrov- 

alerkin (SUPG) finite element system in space using forty axial 

nd ten radial nodes along with a fractional step theta scheme in 

ime. Customized isotherm models, in their kinetic forms, were im- 

lemented into the software using provided templates. Simulations 

ere executed using MATLAB front-end to automate the simula- 

ions. In this process, fitted isotherm parameters for each formal- 

sm were inserted into the simulation template and coupled with 

he column and transport parameters, allowing simulations to be 

un in an integrated manner. This strategy was employed for all 

wenty isotherm parameter fits, resulting in twenty sets of col- 

mn simulations for every isotherm model for both BFI and BNL 

atasets for each resin. Visualization of predictions and their com- 

arison to experimental data was performed using MATLAB. Col- 

mn predictions (for those shown in this paper as well as those 

ot shown) for both resins are provided in the supplementary ma- 

erial Excel datasheet. 

.11. Statistical analysis of batch data fits and column simulations 

To determine the overall quality of batch data fits and column 

redictions, score metrics were created for interpretability. Batch 

ata scores Score m,r,B were generated using Eq. (29) , 

core m,r,B = 1 −
(

NRMSE m,r 

NRMSE max 

)
(29) 

here normalized (by the data mean) root-mean-squared error 

RMSE m,r was calculated for each repeat r of each model m and 

gain normalized based on the maximum NRMSE value NRMSE max 

n the set of all twenty repeats for all models. 

Column prediction scores Score m,r,C were generated using 

q. (30) , 

core m,r,C = 1 −
(

x 1 
NRMSE m,r 

NRMSE max 
+ x 2 

�FM m,r 

�FM max 
+ x 3 

�PW m,r 

�PW max 
+ x 4 

�PM m,r 

�PM max 

)
(30) 

hich includes NRMSE in addition to three metrics describing the 

lution peak: first moment FM m,r , peak width (at 95% confidence) 

W m,r , and peak maxima PM m,r with weights x 1 , x 2 , x 3 , x 4 , respec-

ively. � of these metrics represents the deviation between the 

imulated value and experimental value. Values of these weights 

re set to 0 . 5 for NRMSE and 0 . 1 ̄6 for each peak metric, such

hat NRMSE accounts for half of the score while the peak met- 

ics evenly compose the remaining portion. The column prediction 

core was assembled as such to provide a more realistic depiction 

f simulation agreement with the experimental data and is similar 

o the scoring strategy developed by Heymann et al. [80] . Resulting 

cores for batch fits and column predictions are bounded between 

ero and unity, with the worst candidate having a score of zero 

nd a perfect candidate (zero error) having a score of unity. It is 

orth noting that the logarithm (base ten) of the NRMSE terms 

as instead employed for the Capto Adhere data set because the 
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pread in NRMSE values between the best and worst performing 

odels was so broad that it entirely obscured differences in score 

etween comparable models. 

After calculation of the ensemble of scores for each model, the 

kaike information criterion (AIC) [81–83] was employed to qualify 

he isotherm models based on their relative performance and their 

omplexity (number of isotherm parameters). Eq. (31) 

IC m 

= R ln 

( 

1 

R 

R ∑ 

r=1 

( 1 − Score m,r ) 
2 

) 

+ 2 P + 

2 P ( P + 1 ) 

R − P − 1 

(31) 

hows the formulation of the AIC used in this study, where the first 

erm represents the log likelihood function and is composed of the 

og residual of the scores, for either the batch fits or the column 

redictions (using the same equation). Here, P is the number of 

sotherm parameters and R is the number of repeats performed. It 

s worth noting that the first term includes the sum of all score 

esiduals and thus should account for the spread in score values 

ithin a set of repeats for a given model, which may vary notably 

ith model complexity. The second term represents the negative 

eight (since a larger value of AIC indicates a lower ranked model) 

ssociated with the number of parameters. Further, a correction for 

mall sample size ( R/P < 40 ) is applied in the third term. Next,

he AICs are rescaled to �m 

using Eq. (32) 

m 

= AIC m 

− AIC min (32) 

o improve their interpretability by subtracting the lowest AIC of 

ll models AIC min from all AI C m 

. This results in the model with the 

owest AIC having a �m 

of zero and thus being the highest ranked. 

astly, Eq. (33) 

 m 

= 

exp ( −�m 

/ 2 ) ∑ M 

m =1 exp ( −�m 

/ 2 ) 
(33) 

s used to calculate the model likelihood w m 

(Akaike weight), 

hich represents the probability of selecting a model, from �m 

for 

ll models M. This equation results in each model having a score 

etween zero and one, such that the sum of all w m 

is unity. 

.12. Isotherm parameter sensitivity analyses 

Sensitivity analyses were performed using the elementary ef- 

ects method, also called one-at-a-time (OAT) analysis or the Mor- 

is method [84] . Briefly, this method is an iterative process where 

ach parameter (isotherm parameter) is separately perturbed by 

 fixed percentage to develop a sampling matrix for each model. 

wenty fixed percentages (0.1% to 2% in 0.1% steps) were employed 

n this work to obtain confidence in the analyses. The first row of 

his matrix corresponds to the native (unperturbed) set of isotherm 

arameters and each subsequent row corresponds to the same set 

ith a single perturbed isotherm parameter. Next, isotherms and 

olumn simulations were generated using the isotherm parame- 

ers present in each row. Variances corresponding to each param- 

ter and model, for batch and column, were then calculated using 

he root-mean-square error between the simulation with the na- 

ive parameters and the simulation with a perturbed parameter. 

astly, sensitivity scores were calculated via the ratio of individual 

arameter variances to the total sum of parameter variances for 

ach model. A more detailed description of this method along with 

ts mathematical construction is provided in SI.2 (Word document) 

. Results and discussion 

.1. Model selection workflow 

The objective of this work was to rigorously examine the rel- 

tive efficacies of various isotherm formalisms for their ability to 
8 
se batch isotherm data to make direct column predictions for 

apto MMC, a multimodal cation-exchange resin, and for Capto Ad- 

ere, a multimodal anion-exchange resin using two mAbs (mAb A 

nd mAb B). To this end, a workflow ( Fig. 1 ) was employed to qual-

fy the isotherm models using various techniques of inspection. 

Briefly, the wor kflow was initiated with determination of 

sotherm parameters for seven isotherm formalisms and two data 

ubsets (corresponding to selected loading conditions) via fitting 

f batch isotherm data. Importantly, fitting was repeated twenty 

imes for each model to characterize their reproducibility. Isotherm 

arameters for all models are included in SI.1 Table 1 for Capto 

MC – mAb A and in SI.1 Table 2 for Capto Adhere – mAb B, 

long with confidence intervals for each parameter based on their 

5% significance level between the twenty fits. Column and sta- 

ionary phase parameters were either determined experimentally 

r obtained from the literature. Transport parameters were then 

alculated primarily using physical correlations based on opera- 

ional parameters as well as parameters describing the columns, 

tationary phases, and the mAbs. Overall sets of isotherm, col- 

mn, and transport parameters were thereafter employed to per- 

orm column simulations using the general rate model framework. 

sotherm models were next compared with respect to their relative 

bilities to predict the elution curves, where evaluation was based 

n both visual inspection (agreement between simulation and ex- 

erimental data) and statistical methods. The Akaike information 

riterion was employed as a statistic to aid in model selection and 

ensitivity analyses were lastly performed to provide further in- 

ight into the relative contributions of each isotherm parameter. 

.2. Influence of batch data loading conditions on model performance 

or Capto MMC 

Column simulations for Capto MMC using the pH dependent 

MA isotherm with parameters obtained from BFI data (no batch 

ata points removed) are shown in Fig. 2 . As can be seen, the SMA

FI simulations were not in good agreement with the experimental 

olumn data. While the peak center of mass was roughly aligned at 

he lower two pH values 5.3 ( Fig. 2 A) and 5.6 ( Fig. 2 B), this com-

arison worsened for the higher two pH values 5.9 ( Fig. 2 C) and

.2 ( Fig. 2 D). Further, the simulated peak shapes were significantly 

roader than those obtained in the experiments. The variability 

etween repeated isotherm fits can also be evaluated from these 

imulations. For this isotherm, there were minimal differences be- 

ween the worst, median, and best column predictions obtained 

rom repeated batch isotherm parameter fits. Interestingly, while 

he column simulation results with this isotherm model were sub- 

ar, the batch data were well-fitted across all salt and pH condi- 

ions, illustrated by the fits at pH 5.25 and 6 ( Fig. 2 E , 2 F). This

isparity indicates that the quality of the batch data fit may not 

e a sufficient determinant of column simulation accuracy. Future 

ork will examine this in more detail to determine if there are 

ertain heuristics that can improve the connectivity between the 

atch and column fits. 

While the SMA isotherm did not show adequate results with 

he BFI data, column simulations with SMA isotherm parameters 

btained from BNL batch data (without the linear portion) exhib- 

ted a significant improvement in their agreement with the exper- 

mental data ( Fig. 2 G–2 J). Here, the simulated peaks became much 

etter aligned at the lower two pHs, with similar peak shapes as 

hose obtained in the experiments. This agreement decreased at 

igher pH, with misalignment of the peaks at pH 5.9 and 6.2. 

igh consistency was also seen between the runs, with only minor 

ifferences seen between the median and best simulations at the 

igher pH values. When comparing the batch isotherm fits ( Fig. 2 E, 

 F for BFI and Fig. 2 K, 2 L for BNL) one can see that the shapes

re noticeably different. When the low concentration data points 
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Fig. 1. Workflow describing the strategy for evaluation and selection of isotherm formalisms. 
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ere removed ( Fig. 2 K, 2 L), the initial slopes of the fits became

ignificantly steeper, with the isotherms at low salt concentration 

ecoming essentially square. This observation was accompanied by 

oticeable differences in the Capto MMC linear isotherm parameter 

alues (SI.1 Table 1) between SMA BFI and BNL—equilibrium con- 

tants K eq, 0 and K eq, 1 are larger for BFI, while characteristic charges 

0 and ν1 are larger for BNL. As expected, the high concentration 

ata were captured better by the BNL fit. This may imply that BNL 

utperformed BFI simply because it captures the plateau region 

f the batch data better, thus being more relevant to the high- 

oad (25 mg/ml, ∼60% of DBC) experimental conditions typical of 

rocess chromatography. Because elution under nonlinear loading 

onditions refers to the region of the adsorption isotherm where 

he protein concentration is high and the salt concentration is suf- 

cient to result in elution, it is necessary to accurately capture 

his region of the batch data to obtain sound column predictions. 

nother contributing factor for this discrepancy is that the error- 

rone nature of the low concentration batch adsorption data could 

ead to a decrease in model quality, reflected in the accuracy of the 

olumn simulations. In scenarios of such high binding affinity with 

arge initial slopes, small deviations in liquid phase protein concen- 

ration measurements may result in significant differences in cal- 

ulated solid phase concentrations. With some of these data points 

aving concentration values that were near zero, it is possible that 

ntrinsic measurement errors during the batch experiments led to 

oor column predictions. Based on these results with SMA, BNL 

ata were used for Capto MMC in visualizing predictions for the 

emaining isotherm models investigated in this study. 

.3. Comparisons between SMA and SMA K s models for Capto MMC 

A slightly modified version of the SMA model, SMA K s , was next 

valuated with respect to its ability to fit the batch data as well as 

o predict the elution profiles for Capto MMC. Here, a single pa- 

ameter K s (one of the Mollerup terms [ 50 , 51 ]) is added which al-

ows the isotherm to have some added flexibility in its equilibrium 

onstant via an exponential dependence on salt concentration. This 

odification helps address one of the key limitations of the classi- 

al SMA model, namely the fixed value of the equilibrium constant. 

s can be seen in the supplementary material Excel datasheet, this 

odification resulted in a significant improvement in the ability of 

he simulations to predict both peak shapes as well as the impact 

f pH on the elution behavior. Evidently, the decay in prediction 

ccuracy with increasing pH is addressed, which can be attributed 

o the increased flexibility of the isotherm. Since the K s term is 

ositive, the decline in binding affinity with increasing salt occurs 
9 
t a slower rate as compared to the base SMA model. This man- 

fests in the peaks shifting to the right (as compared to the SMA 

odel), particularly at the higher two pHs, enabling better charac- 

erization of the peak shape and retention. Although the column 

redictions were clearly improved, the batch isotherm fits were 

ndistinguishable as compared to those of the unmodified SMA 

odel. Again, this implies that the quality of the batch isotherm 

t is often not an adequate predictor of the column behavior. One 

f the drawbacks, however, of the SMA K s model is a decrease in 

he consistency between repeated simulations with the different 

arameter sets from the batch fits. This is an expected result since 

ariability in parameter estimation tends to increase with model 

omplexity. Notwithstanding, even the worst prediction for SMA 

 s was comparable to the best prediction with SMA. These results 

emonstrate that the K s modification is a clear improvement over 

he base SMA model for this scenario. 

.4. Influence of batch data loading conditions on model performance 

or Capto Adhere 

Having demonstrated that BNL adsorption data resulted in im- 

roved predictions for Capto MMC, it was of interest to ascertain 

f this was also the case for Capto Adhere. As can be seen, the dif-

erences between BFI ( Fig. 3 A–3 E) and BNL ( Fig. 3 F–J) predictions

ere not discernible for the SMA K s model. The distinction in the 

ffect of removing the low concentration data is associated with 

he shapes of the isotherms, where a stark difference is seen be- 

ween the curves for Capto Adhere and Capto MMC batch data. 

he isotherm data shown for Capto MMC was highly favorable, 

ith steep initial slopes in contrast with the shallow initial slopes 

hown for Capto Adhere. Measurement error is expected to be pro- 

ounced at low protein concentrations (near zero) and results in 

naccuracies when these points are included in the model. How- 

ver, for shallow slopes, batch data points at low protein loadings 

an be more reasonably measured. In this case, the predictions for 

FI and BNL are similar enough that it is unclear if the low con- 

entration should be removed. For the sake of experimental effi- 

iency, necessitating fewer data points is ideal, however more com- 

lex isotherm models should be evaluated to conclude which data 

ets are ideal. Visualization of predictions for the remaining mod- 

ls studied for Capto Adhere here will be shown using BFI data 

or brevity (i.e., not using BNL data). Lastly, the magnitude of the 

sotherm parameters (SI.1 Table 2) obtained for BFI and BNL are 

imilar, indicating that the nearly identical isotherm shapes are 

onsistent with the parameter values. This observation is also in 

ontrast with what was seen for Capto MMC, where there were 
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Fig. 2. Capto MMC column simulations and batch isotherm fits using SMA BFI. Simulations: (A) pH 5.3; (B) pH 5.6; (C) pH 5.9; (D) pH 6.2. Solid blue lines: lowest scoring 

prediction; Solid brown lines: median scoring prediction; Solid green lines: best scoring prediction; Dotted black lines: experiment. Batch isotherm fits: (E) pH 5.25; (F) pH 

6.0. Simulations using SMA BNL: (G) pH 5.3; (H) pH 5.6; (I) pH 5.9; (J) pH 6.2. Batch isotherm fits: (K) pH 5.25; (L) pH 6.0. Note that the isotherm fits correspond to the 

best column predictions. 
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otable discrepancies in the magnitude of the linear isotherm pa- 

ameters which were consistent with changes in the initial slopes. 

.5. Comparisons between SMA and SMA K s models for Capto Adhere 

While the SMA isotherm showed some promise for the Capto 

MC resin, this was not the case for Capto Adhere. The results 

ith the SMA model for Capto Adhere (provided in the supple- 

entary material Excel data sheet) indicated, unequivocally, that 

t is unable to fit the batch data and to predict the column elu- 

ion profiles. The decrease in elution recovery with decreasing 

radient length (increasing gradient slope) is not predicted and 

he isotherm shape, with respect to ionic strength, is monotonic—

hich is clearly not correct. These observations are unsurpris- 
10 
ng in that the functional form of the SMA isotherm yields a 

trictly decreasing binding capacity with increasing salt concentra- 

ion, making it unable to describe a U-shaped binding trend in 

he isotherms. This is an intrinsic limitation of the SMA model 

nd demonstrates that more complex isotherm formalisms must 

e used for this scenario. 

Column linear salt gradient simulations and fitted batch ad- 

orption data using the SMA K s model in BFI form are shown in 

ig. 3 A–3 E. Column predictions are shown at four gradient lengths: 

 CV ( Fig. 3 A), 10 CV ( Fig. 3 B), 20 CV ( Fig. 3 C), and 30 CV ( Fig. 3 D),

hile the batch data fit is shown in Fig. 3 E. In sharp contrast to

he SMA isotherm, the SMA K s model was able to capture both the 

sotherm and elution profile trends. As can be seen, the batch solid 

hase concentrations exhibited a more complex behavior with re- 
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Fig. 3. Capto Adhere column simulations and batch isotherm fit using SMA K s BFI. Simulations: (A) 5 CV gradient length; (B) 10 CV gradient length; (C) 20 CV gradient 

length; (D) 30 CV gradient length. Solid blue lines: lowest score predictions; Solid brown lines: median score predictions; Solid green lines: best score predictions; Dotted 

black lines: experiment. Batch isotherm fit: (E) pH 8.0. Simulations using SMA K s BNL: (F) 5 CV gradient length; (G) 10 CV gradient length; (H) 20 CV gradient length; (I) 30 

CV gradient length. Batch isotherm fit: (J) pH 8.0. Note that the isotherm fits correspond to the best column predictions. 

s

i

w

t

a

p

t

i

a

c

5

p

d

s

w

t

a

t

o

d

i

h

s

i

S

c

i

pect to salt concentration than was observed for Capto MMC. This 

ncluded a U-shaped relationship of the adsorbed concentration 

ith respect to ionic strength at both linear and non-linear adsorp- 

ion conditions as well as a lack of a “non-binding” condition. This 

dsorption behavior is a result of the multiple modes of interaction 

resent in the multimodal anion-exchange system, namely, elec- 

rostatic and hydrophobic interactions. Importantly, the U-shaped 

sotherm is associated with elution recovery losses in salt gradients 

t increasing gradient slopes. This trend is evident here—the peak 

ompletely disappeared when the gradient length is decreased to 

 CV. Surprisingly, the SMA K s model, without any parameters ex- 

licitly associated with hydrophobicity, was able to accurately pre- 

ict both the recovery loss and the narrowing peak shape with re- 

pect to gradient slope in the column simulations. 
11 
With a single modification ( K s ), the flexibility of the SMA model 

as drastically increased with respect to its ability to account for 

his more complex salt dependent behavior. In fact, this model 

ddresses one of the key limitations of the SMA model, namely 

hat the equilibrium constant is fixed. While small positive values 

f K s ( < 0.5) determined for Capto MMC allowed for better pre- 

iction in the subtleties of peak shape (delayed elution and tail- 

ng), the large positive values ( > 4) determined for Capto Adhere 

ad a dramatic impact on the predicted profiles (growth in peak 

hape, tailing, and recovery loss). In addition to its significantly 

mproved performance, the minimal number of parameters in the 

MA K s model allows it to readily fit the data while also achieving 

onsistent predictions between repeats. Overall, this simple mod- 

fication can be employed to notably improve the capabilities of 
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Fig. 4. Capto MMC column simulations and batch isotherm fits using SMA Ext. BNL. Simulations: (A) pH 5.3; (B) pH 5.6; (C) pH 5.9; (D) pH 6.2. Solid blue lines: lowest 

scoring prediction; Solid brown lines: median scoring prediction; Solid green lines: best scoring prediction; Dotted black lines: experiment. Batch isotherm fits: (E) pH 5.25; 

(F) pH 6.0. Capto Adhere column simulations and batch isotherm fit using SMA Ext. BFI. Simulations: (G) 5 CV gradient length; (H) 10 CV gradient length; (I) 20 CV gradient 

length; (J) 30 CV gradient length. Batch isotherm fit: (K) pH 8.0. Note that the isotherm fits correspond to the best column predictions. 
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he original SMA model to describe significantly more complex 

ehavior. 

.6. Comparisons with extended SMA model 

As described in the theory section, the SMA K s model can be 

xpanded by including an additional term K p (second Mollerup 

erm) to create the SMA Extended (Ext.) isotherm. This K p term 

iffers from K s in that it is tied to an exponential dependence 

n protein concentration instead of salt concentration, giving the 

sotherm additional flexibility, particularly in regimes of high pro- 

ein loading. After adding this parameter, the accuracy of col- 

mn simulations was seen to further improve for Capto MMC 

 Fig. 4 A–4 D), with the general peak shape and alignment in even
12 
loser agreement with the experimental data. Since the value of K p 

as positive for all isotherm parameter fits, the effective binding 

trength was modified as the protein concentration increased, re- 

ulting in better agreement between the simulated and experimen- 

al profiles. As anticipated, the variability between repeat simula- 

ions increased for the SMA Ext. model due to its increased com- 

lexity. For the SMA Ext. batch isotherm fits ( Fig. 4 E, 4 F), some dif-

erences, while subtle, can be seen in comparison to the SMA and 

MA K s models. The primary difference here being that the plateau 

egion is slightly sloped upwards for the SMA Ext. model, which 

akes sense due to the presence of the K p parameter adding an 

dditional dependence of the isotherm shape on the protein con- 

entration. Since SMA Ext. has both K s and K p , these two param- 

ters can be tuned in conjunction to provide additional control 



S.H. Altern, J.P. Welsh, J.Y. Lyall et al. Journal of Chromatography A 1693 (2023) 463878 

o

t

t

i

s

s

s  

a

c

p

t

m

t

t

i

s

i

p

t

c

m

t

t

i

m

s

4

a

i

d

u

E  

S

n

t

ν
o

s

i

v

E

p

e

n

c

n

t

t

g

i

t

a

r

t

w

t

t

T

t

h

(

d

t

u

d

m

l

s

w

b

l

I

t

t

s

t

p

f  

r

r

m

s

t

t

b

f

b

p

n

s

d

a

w

fi

t

p

S

a

i

c

i

g

r

p

t

p

o

K

i

t

t

β
T

n

t

t

t

p

m

s

f

s

6

o

f the shapes of both the elution profiles and isotherm shapes 

hrough effective adjustments of the equilibrium constant. In fact, 

hese parameters can be adjusted to account for a range of affin- 

ty vs. salt behavior, be it subtle departures from monotonicity as 

hown for Capto MMC, or to completely non-monotonic behavior, 

hown for Capto Adhere. 

This model was also employed for Capto Adhere, where column 

imulations and the batch data fit are shown in Fig. 4 G–4 K, where

 subtle improvement in the quality of predictions can be seen as 

ompared to those obtained SMA K s . This improvement is accom- 

anied by a minor decrease in consistency between repeats. While 

he addition of K p led to a noticeable improvement for the SMA 

odel with Capto MMC, the impact here is not as significant. Since 

he influence of this parameter is tied to protein concentration and 

he concentration during elution is relatively low, the utility of K p 

s minimized. With respect to the parameter values, similarities are 

een between SMA Ext. and SMA K s . Aside from the commonalities 

n fitted isotherm shapes, similarities in parameter values may im- 

ly that there are ideal ranges and combinations that are required 

o achieve sound predictions. Well-determined parameters (narrow 

onfidence intervals) residing in the same range suggest that their 

agnitude can be an indicator of prediction success. This is impor- 

ant when adding additional parameters to the model since this 

ends to increase variability in fitted values (broader confidence 

ntervals). If the added parameters do not contribute notably to 

odel predictions, their addition may simply detract from the con- 

istency that is provided from the essential parameters. 

.7. Comparisons with explicit multimodal isotherm formalisms 

While the single-mode SMA-type isotherm models described 

bove were well-performing overall (qualitatively), it was also of 

nterest to examine isotherms with explicit (stoichiometric) hy- 

rophobic contributions. Fig. 5 A–5 F shows the Capto MMC col- 

mn predictions and isotherm fits obtained when using the Ottens 

xt. model which is described in Nfor et al. [12] . As described in

ection 2.2 , this model has three additional parameters added ( n 0 , 

 1 , and s ) to the SMA Ext. isotherm. These parameters account for 

he stoichiometry of hydrophobic interactions (analogous to ν0 and 

1 ) and the number of shielded hydrophobic binding sites (anal- 

gous to σ ), respectively. Although the batch isotherm fits were 

imilar to those obtained with the SMA-type model fits, the qual- 

ty of the column predictions was quite different. Not only was the 

ariability between different repeats more pronounced with Ottens 

xt., but even the best prediction with this isotherm did not ap- 

roach the predictions achieved with the SMA Ext. model. Appar- 

ntly, adding these parameters seemed to decrease model robust- 

ess while not offering any noticeable benefit under these column 

onditions. As shown in SI.1 Table 1, the confidence intervals of 

 0 and n 1 are much greater than those for ν0 and ν1 , indicating 

hat the charged stoichiometric terms are better determined than 

he hydrophobic stoichiometric terms for this isotherm. This sug- 

ests that n 0 and n 1 may not be appropriate parameters to include 

n the model framework for this application. By including parame- 

ers that have a relatively minor impact on the model output, the 

dded complexity of the model can lead to variability in the pa- 

ameter fitting routine without any clear advantage stemming from 

heir addition. This point will be further elaborated on later in this 

ork using sensitivity analyses of the individual isotherm parame- 

ers. We also examined the Ottens model in a reduced form, with 

he K s and K p terms removed (“Ottens” instead of “Ottens Ext.”). 

he results demonstrated that the predictive ability of this form of 

he Ottens model was lower than the unreduced formulation and 

ad the lowest performance of all models examined in this work 

shown in the supplementary material Excel datasheet). 
13 
It is worth mentioning that removing the low concentration 

ata (BNL) also improved predictions for Capto MMC with the mul- 

imodal isotherm formalisms. Hahn et al. [46] proposed that the 

se of a single adsorption capacity for both electrostatic and hy- 

rophobic interactions in the Ottens Ext. model (Nfor et al. [12] ) 

ay have led to difficulties in capturing both the linear and non- 

inear regions of the Capto MMC isotherms in this work. This rea- 

oning is questioned by the Capto Adhere results in this study—

hile the assumption of simultaneous binding was applied for 

oth Capto MMC and Capto Adhere, difficulties in describing both 

inear and nonlinear regions were not present for Capto Adhere. 

f the applied assumption was invalid, it would have resulted in 

hese difficulties for both resins. Therefore, it is more likely that 

hese difficulties arise from the inability to capture the isotherm 

hape with respect to loading concentration (steepness of the up- 

ake region, i.e., favorability). 

Further investigation of the Ottens Ext. isotherm model’s ca- 

ability to predict the elution behavior and to fit the batch data 

or Capto Adhere is shown in Fig. 5 G–5 K. While the n and s pa-

ameters are included in the model formulation to obtain a more 

ealistic depiction of the hydrophobic components of the multi- 

odal interactions—which are dominant in the U-shaped binding 

cenario—their inclusion, interestingly, did not seem to improve 

he model predictions. In addition, there was more variation be- 

ween the set of repeats due to the larger number of parameters 

eing fit, also indicated by the increase in confidence interval size 

or the parameters (SI.1 Table 2). Further, the simulations for the 

est repeat were quite similar to the results produced by the sim- 

ler isotherm models, suggesting that the n and s parameters did 

ot offer any discernable benefit to the model formulation in this 

cenario. It is worth noting that the n value determined with this 

ata for the Ottens Ext. model was quite small with an exception- 

lly large confidence interval, suggesting that the value was not 

ell-determined and that it did not have a dramatic impact on the 

t. Further, as shown in the supplementary material, removal of 

he K s and K p parameters from the Ottens Ext. model resulted in 

redictions that were even worse than those produced by the base 

MA model, even with appreciable n values. This implies that the n 

nd s parameters could not describe the influence of hydrophobic 

nteractions in these systems without the presence of the activity 

oefficient parameters. 

In addition to the Ottens models, another set of multimodal 

sotherm models, called SMAHIC and SMAHIC Ext., was investi- 

ated. This model differs from the Ottens construction—two pa- 

ameters β0 and β1 are added to the model formulation. These 

arameters represent the number of released water molecules in 

he hydrophobic exchange reaction [62] , with β0 acting as a multi- 

licative constant and β1 being tied to an exponential dependence 

n salt concentration. SMAHIC Ext. has these two parameters with 

 s and K p also present, resulting in a total model construction sim- 

lar to the isotherm formalism presented by Lee et al. [16] . While 

his model presents a holistic depiction of the multimodal interac- 

ion, it has some potential redundancies in its parameters, wherein 

1 and K s are both tied to an exponential dependence on salt. 

he only difference being that β is tied to n (present in the expo- 

ent for solid phase concentration) while K s is tied to K eq . Further, 

he SMAHIC Ext. model contains the greatest number of parame- 

ers (12) out of all the isotherms considered in this paper. Since 

he variability in column predictions increases with model com- 

lexity, there must be an advantage present for the more complex 

odel to be selected. This in mind, parameter redundancy is unde- 

irable as it can decrease model robustness and may not affect per- 

ormance substantially. Prediction and fit results are shown in the 

upplementary material for the SMAHIC isotherm and in Fig. 6 A–

 F for the SMAHIC Ext. isotherm. While the SMAHIC model yielded 

ne of the repeat runs achieving the most accurate single predic- 



S.H. Altern, J.P. Welsh, J.Y. Lyall et al. Journal of Chromatography A 1693 (2023) 463878 

Fig. 5. Capto MMC column simulations and batch isotherm fits using Ottens Ext. BNL. Simulations: (A) pH 5.3; (B) pH 5.6; (C) pH 5.9; (D) pH 6.2. Solid blue lines: lowest 

scoring prediction; Solid brown lines: median scoring prediction; Solid green lines: best scoring prediction; Dotted black lines: experiment. Batch isotherm fits: (E) pH 5.25; 

(F) pH 6.0. Capto Adhere column simulations and batch isotherm fit using Ottens Ext. BFI. Simulations: (G) 5 CV gradient length; (H) 10 CV gradient length; (I) 20 CV gradient 

length; (J) 30 CV gradient length. Batch isotherm fit: (K) pH 8.0. Note that the isotherm fits correspond to the best column predictions. 
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ion out of all the models studied, this success was overshadowed 

y the variability of the predictions. The high accuracy of the best 

epeat run could be attributed to having interactions between the 

ultiplicative β and n terms that allowed for an increase in the 

exibility of the functional form. Although reasonable predictions 

ere produced with the SMAHIC Ext. model, there was no clear 

mprovement over the simpler models. This seems to imply that 

here is no benefit for including both K s and the β terms in the 

odel framework. The overall contribution of hydrophobic inter- 

ctions is evidently minimal, for the range of salt and pH condi- 

ions investigated, so the results presented here for MMCEX are 

ot surprising. While the hydrophobic interactions do result in in- 

reased salt tolerance, compared to single mode ion-exchange sys- 

ems, the relationship of binding affinity to salt concentration is 
14 
urely monotonic in the MMCEX system which suggests that ex- 

licit hydrophobic terms are not required. Conversely, while the 

ontribution of hydrophobic interactions for Capto Adhere is more 

ignificant, these isotherm parameters still do not provide any no- 

iceable benefit. 

Predictions with the SMAHIC (shown in the supplementary ma- 

erial Excel datasheet) and SMAHIC Ext. ( Fig. 6 G–6 K) models were 

lso performed for Capto Adhere. Evidently, adding the β0 and β1 

arameters into the model formulation led to a significant drop in 

redictive ability. This result is striking—the best repeat could no 

onger capture the shape or retention of the elution peaks, while 

he prior models could. Possible contributing factors to the lack- 

uster performance of the SMAHIC Ext. model could be variability 

n parameter fitting, nonintuitive interactions between parameters, 
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Fig. 6. Capto MMC column simulations and batch isotherm fits using SMAHIC Ext. BNL. Simulations: (A) pH 5.3; (B) pH 5.6; (C) pH 5.9; (D) pH 6.2. Solid blue lines: lowest 

scoring prediction; Solid brown lines: median scoring prediction; Solid green lines: best scoring prediction; Dotted black lines: experiment. Batch isotherm fits: (E) pH 5.25; 

(F) pH 6.0. Capto Adhere column simulations and batch isotherm fit using SMAHIC Ext. BFI. Simulations: (G) 5 CV gradient length; (H) 10 CV gradient length; (I) 20 CV 

gradient length; (J) 30 CV gradient length. Batch isotherm fit: (K) pH 8.0. Note that the isotherm fits correspond to the best column predictions. 
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nd overfitting to the batch data. In any case, these results fur- 

her support the finding that additional parameters were not re- 

uired to describe the contributions of hydrophobic interactions 

hen this can be readily accomplished with the K s parameter. In- 

erestingly, for SMAHIC, the removal of K s and K p resulted in a sig- 

ificant reduction in the quality of the predictions (shown in the 

upplementary material Excel datasheet), indicating that the elu- 

ion behavior resulting from the U-shaped isotherm could not be 

ccurately predicted without the use of the K s parameter. 

.8. Analysis of model performance using scoring metrics 

Although a qualitative comparison of the experimental and 

imulated profiles informs model performance, a quantitative ap- 
15 
roach paves a clearer road towards model qualification. To this 

nd, statistical analyses were performed by calculating scores for 

oth the Capto MMC column predictions and batch data fits. 

olumn prediction scores were calculated using a weighted sum 

f NRMSE and peak shape deviation (first moment �FM , peak 

idth �PW , and peak maxima �PM ) as described in Section 3.11 . 

atch isotherm scores were calculated solely from the NRMSE of 

he fits. Scores were calculated for all models and repeats, us- 

ng both BFI and BNL data. Fig. 7 shows the distribution of col- 

mn ( Fig. 7 A , 7 C) and batch ( Fig. 7 B , 7 D) scores for all models

sing BFI and BNL data, respectively, visualized using boxplots. 

ll twenty repeated fits and simulations are visualized, where 

he box minima and maxima represent the worst and best re- 

eats, respectively. Further, the box borders represent the lower 
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Fig. 7. Boxplots of Capto MMC BFI and BNL score distributions. BFI scores: (A) column predictions; (B) batch isotherm fits. BNL scores: (C) column predictions; (D) batch 

isotherm fits. 
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nd upper quartiles with the box centerline representing the 

edian. 

Overall, BNL is superior to BFI, for this data set, due to the BNL

core distributions being consistently higher for both column and 

atch. This result for the batch fits is unsurprising, since the re- 

uced number of data points leads to improved fits to the data. 

owever, the result for the column predictions illustrates that 

he presence of low protein concentration data points universally 

kews the model performance for this data set. While the trends 

n scores for BFI and BNL share some similarities, there are no- 

able differences, particularly for the batch scores. For BFI, SMA 

nd its two variants are the highest scoring models and achieve 

qual scores with seemingly no variability between repeats. For 

NL, the highest median score was seen for the SMA Ext. model, 

ollowed by the other SMA-type models. While the SMAHIC model 

chieved the highest score on a single repeat, this result was 

n outlier (3 standard deviations above the median score). Both 

FI and BNL column scores show that there is a clear relation- 

hip between variability and model complexity (i.e., number of 

sotherm parameters). This relationship is expected, due to the 

ncreasing uncertainty in parameter estimation that accompanies 

arger optimization problems. Interestingly, while significant dif- 

erences in variability are seen in the column scores, minor dif- 

erences were seen in the batch scores, strongly suggesting that 

he quality of the batch data fit is not an adequate determinant 
16 
f the quality of column predictions. Although the column scores 

ildly trended with batch scores for BFI, no such trends are seen 

or BNL. The discrepancy is so prominent for BNL that there is no 

iscernible difference between batch scores for any of the mod- 

ls, while the column scores were seen to vary substantially. One 

ossible explanation for this finding is that the data is overfit 

or the complex isotherm models and leads to some poorly de- 

ermined isotherm parameters. More specifically, due to the con- 

iderable number of parameters being fit, relative to the minimal 

umber of data points, excellent fits can be achieved using each 

odel—however with high variability in the estimated isotherm 

arameters. 

One noteworthy trend within the BNL column prediction score 

istribution ( Fig. 7 C) is between SMA, SMA K s , and SMA Ext. The

edian column prediction scores increase with both modifications, 

hich is consistent with the clear improvement in the qualitative 

omparisons shown in the chromatograms. As expected, this en- 

ancement is accompanied by an increase in variability. Even so, 

he lowest column scores for the modified SMA models are no 

orse than the best score for the unmodified SMA, indicating that 

he modified models are at least as well-performing as SMA. This 

s not the case, however, for the Ottens models, which seem to 

ave both a notable increase in variability as well as an overall 

ecrease in column score. In addition, the SMAHIC and SMAHIC 

xt. models appear to have some repeats that can contend with 
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Fig. 8. Boxplots of Capto Adhere BFI and BNL score distributions. BFI scores: (A) column predictions; (B) batch isotherm fits. BNL scores: (C) column predictions; (D) batch 

isotherm fits. 
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ria. 
he SMA models; however, their extreme inconsistency between 

epeats makes them undesirable. Overall, it appears that the set 

f SMA models are the highest performing out of all the models 

tudied in this work. 

Employing the same methodology for Capto Adhere, score dis- 

ributions are visualized in Fig. 8 , where Fig. 8 A and 8 B corre-

pond to the column predictions and isotherm fits for BFI, respec- 

ively, and Fig. 8 C and 8 D correspond to those for BNL. Unlike the

ndings shown for Capto MMC, here the scores for column and 

atch clearly trend with each other. This is because the isotherm 

ust be able to capture the U-shaped binding trend in order to be 

ble to predict the shrinking peak with increasing gradient slope in 

he MMAEX system. As shown by the score distributions, the only 

odels that achieve a reasonable score are SMA K s , SMA Ext., Ot- 

ens Ext., and SMAHIC Ext. The commonality between these mod- 

ls is the inclusion of the K s parameter—the models that do not 

ave this parameter (SMA, Ottens and SMAHIC) fail to achieve 

easonable scores for both isotherm fits and column predictions. 

hile all four isotherms that included the K s term performed sim- 

larly with the batch data, there was a clear difference for the 

olumn simulations. As can be seen, both modified SMA models 

chieved predictions of equal or better quality as compared to Ot- 

ens Ext. and SMAHIC Ext. predictions with smaller variation be- 

ween repeats, despite not having parameters explicitly describing 

he stoichiometry of hydrophobic interactions. 
17 
It is interesting to note that the score distributions for BNL 

 Fig. 8 C and 8 D) were similar to that of BFI ( Fig. 8 A and 8 B). This

s in sharp contrast to the results for Capto MMC where models 

ased on the BFI and BNL data resulted in quite different behav- 

or where BNL significantly outperformed BFI for all models in the 

MC system. One of the reasons for this might be that while the 

sotherm shapes for Capto MMC were extremely favorable (square), 

he initial slopes for Capto Adhere had a shallow uptake which re- 

ulted in the low concentration region being significantly less error 

rone. 

Importantly, the score distributions showed that the SMA Ext. 

sotherm was the best performing model (i.e., highest median 

core) for both multimodal resins. This key finding indicates that 

he terms accounting for explicit (stoichiometric) hydrophobic con- 

ributions were not only unneeded in the model formulation, but 

lso detrimental to overall model performance. Notwithstanding, 

he inclusion of these parameters was less problematic for Capto 

dhere compared to Capto MMC—the relative changes in score me- 

ian and spread were less noticeable. Implied in this finding is 

he impact of model complexity (number of isotherm parameters), 

hich poses a disadvantage to the explicit multimodal isotherm 

ormalisms—particularly in terms of prediction variability. To better 

nderstand this impact, further analysis was conducted to better 

ncorporate the impact of prediction variability on selection crite- 
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Fig. 9. Model likelihood histograms calculated from AIC scores for BFI (blue) and BNL (orange). Capto MMC histograms: (A) column predictions; (B) batch isotherm fits. 

Capto Adhere histograms: (C) column predictions; (D) batch isotherm fits. 
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.9. Application of Akaike information criterion 

The Akaike information criterion (AIC) was employed to fur- 

her aid in model discrimination. AIC analysis is a method that fa- 

ilitates model differentiation via a scoring system that ranks in- 

ividual models within a considered set. The criterion contrasts 

he benefits of prediction accuracy through a log likelihood term 

nd the drawbacks of model complexity based on the number of 

arameters. AIC is similar to the Bayesian information criterion 

BIC)—only differing in the formulation of the penalty term. Mod- 

ls are ranked with respect to their likelihoods (i.e., probability of 

eing selected) to help facilitate their selection. In practice, the se- 

ection process is not as simple as choosing the model with the 

ighest likelihood; rather, this metric can be used to inform the 

ser on the benefits of model performance versus its complexity. 

urther, increased model complexity may be linked with inconsis- 

ency in performance, particularly when the model parameters are 

tted and are predisposed to higher variability (proportional to the 

cale of the optimization problem). While the AIC does not directly 

nform the influence of added model parameters, it does suggest 

hat when parameters are added to an existing model in the set, 

here must be a benefit associated with their addition for likeli- 

ood to increase—or at the very least, to not decrease substantially. 

Here, AIC was calculated from the residual of the scores for 

oth column predictions and batch fits. AIC values were translated 

nto model likelihoods as described in Section 3.11 . Fig. 9 shows 
18 
he distribution of BFI and BNL model likelihood values for both 

esins using the whole series of isotherm models with respect to 

olumn predictions ( Fig. 9 A and 9 C, for Capto MMC and Capto Ad-

ere, respectively) and batch fits ( Fig. 9 B and 9 D, for Capto MMC

nd Capto Adhere, respectively). The results for Capto MMC in- 

icated that there was clearly a drastic preference given towards 

NL compared to BFI, since the likelihoods for BFI were extremely 

ow, with only SMA BFI having a nonzero probability. This aspect 

f the distribution confirmed the prior observation that BNL is su- 

erior to BFI for the Capto MMC data set. As for model selection 

ithin the BNL distribution, both the column and batch analysis 

uggest that the only models worth considering, for this data set, 

re SMA, SMA K s and SMA Ext.—implying that there is no justifica- 

ion for selecting any of the more complex multimodal isotherms. 

his finding for the batch scores is unsurprising, since there was 

o difference in the fits between the models and the AIC score 

egatively weights their complexity. Model likelihoods for the col- 

mn predictions thus have a greater bearing on the ultimate model 

election. While the SMA model shows the highest likelihood of 

eing selected, this does not necessarily imply that the modified 

MA models should not be considered. The probabilities here are 

imply suggestions based on the relative merits and complexities 

f each model and are intended to narrow down the considered 

et of models. The accuracy of column predictions for SMA K s and 

MA Ext. both appeared to improve (qualitatively) with respect to 

he accuracy of the base SMA model. However, this improvement 
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as accompanied by a decrease in model consistency (i.e., vari- 

bility between repeats), indicating that there is an apparent in- 

uence of model complexity on robustness. Since the AIC scores 

nclude the score for all repeats in the analysis, this relationship is 

ccounted for, along with the penalty associated with having more 

arameters. As a result, the SMA model is suggested by the AIC as 

he best option, due to the decreased consistency of the modified 

MA models. This result highlights the importance of considering 

oth visual as well as statistical measures for model differentiation. 

verall, the SMA Ext. model is arguably the most suitable isotherm 

ormalism for modeling the Capto MMC system in this study. 

Employing the AIC for the Capto Adhere column predictions 

nd batch fits ( Fig. 9 C and 9 D) showed that only the modified

MA models were recommended because they achieved compara- 

le scores to the more complex multimodal models, while having 

ewer parameters. This finding confirms that for both Capto MMC 

nd Capto Adhere, under the conditions studied, the modified SMA 

odels outperformed the more complex multimodal isotherms by 

chieving predictions of equal or greater quality while containing 

ewer parameters. The AIC results for Capto Adhere also indicate 

hat comparable model likelihoods were achieved for the modified 

MA models when BFI or BNL data sets were used for the col- 

mn predictions. On the other hand, for the isotherm fits, BNL was 

uggested—which is not surprising since the fits are expected to 

mprove when fewer data points are included. It is worth noting 

hat BNL has the added benefit of requiring less data, effectively 

educing the experimental burden, which implies that it should be 

elected here. From a qualitative and quantitative standpoint, the 

MA K s is the best isotherm for modeling the of unique behavior 

f Capto Adhere in this study. 

.10. Sensitivity analyses for isotherm parameters 

Having shown that the SMA model and its modified counter- 

arts are the most appropriate models to consider for the Capto 

MC dataset, further analysis was performed to shed some light 

n the relative contributions of the isotherm parameters on the 

odel outputs. As described in Section 3.12 , first-order sensitivity 

nalyses were performed for the BNL models using the elementary 

ffects method, also called one-at-a-time (OAT) analysis. Briefly, 

he method involves an iterative process where a parameter is 

hanged by a fixed percentage (perturbation), a simulation is per- 

ormed, and the variance is calculated using a differential between 

he native simulation (unmodified parameter) and the new simu- 

ation (modified parameter). This process is repeated for all per- 

urbation values, all models, and all model parameters. Here, the 

ethod was employed to determine the impact of each isotherm 

arameter on both column predictions and batch fits, using twenty 

erturbation values (0.1 to 2% in 0.1% steps) for a wholistic depic- 

ion of sensitivities. Once the variances are calculated, sensitivity 

cores for each parameter can be determined by essentially nor- 

alizing relative variance with respect to total variance (for all 

odels). The resulting sensitivity scores represent the relative in- 

uence that each parameter has on the output of the function—

ith greater score indicating a greater importance. As such, the 

um of scores for a single model sum to unity. By comparing the 

cores for isotherm parameters that are shared between models, 

he overall importance of certain parameters in the model frame- 

orks can be ascertained. This method is ideal for determining pa- 

ameter contributions within computationally expensive models as 

ompared to variance-based methods which require significantly 

ore function evaluations (simulations). 

It is important to note the limitations of this method—it is ap- 

licable towards understanding first-order sensitivities (individual 

arameters) and not higher-order sensitivities (groups of parame- 

ers). Thus, this analysis cannot be used to describe the interac- 
19 
ions between parameters that may occur—especially when using 

odels with many parameters. The benefit of OAT analysis is that 

t can be performed with a reduced number of simulations (order 

f hundreds [84] ), while higher-order sensitivity analysis, such as 

ariance-based methods, require many simulations (order of thou- 

ands or tens of thousands) and are typically performed using a 

onte Carlo configuration [85] instead of one-at-a-time sampling. 

Comparing the trends in Capto MMC BNL parameter sensitivity 

etween the column predictions ( Fig. 10 A) and batch fits ( Fig. 10 B)

ields notable differences. While K eq, 1 had the highest sensitivity 

or most of the models using column simulations, it was not im- 

ortant for the batch fits, where σ was shown to be the most in- 

uential. It is plausible that σ would be more impactful in fitting 

he batch data because this parameter is directly related to the sat- 

ration capacity, which is reached during the batch experiments 

ut not in the column experiments. The remaining parameters that 

ad a discernible impact for batch were ν0 and K eq, 0 ; these param- 

ters also affected the column results, although to a greater de- 

ree (i.e., higher sensitivity compared to batch). Further analysis of 

he sensitivity trends also indicated that the particularly important 

sotherm parameters tended to be those that are present in math- 

matically impactful regions of the functional form, assuming that 

heir magnitude was not minute. For example, ν0 had high sen- 

itivity in most models and is present in two exponential terms 

n all isotherm models. On the other hand, ν1 has low values of 

ensitivity which can be expected because it has such small val- 

es. Since the perturbations are used as fixed percentages of each 

arameter, those with near zero values would tend to affect the 

utputs (column simulation or batch fits) minimally. 

Another cause of sensitivity differences for Capto MMC is the 

nfluence of other input parameters that change over the course 

f the simulation (e.g., pH, ionic strength, and protein concentra- 

ion). One example of this is the difference in sensitivities between 

 eq, 1 , K s , and K p , which are all present within exponential terms. 

ensitivities for these parameters would naturally be affected by 

he magnitude of the concentration terms that they are multiplied 

y (pH, ionic strength, and protein concentration). Interactions be- 

ween parameters can also affect their individual sensitivities. For 

nstance, K eq, 0 is not present in an exponential term, but is mul- 

iplied by these parameters that are potentially affecting its sensi- 

ivity. Further, n 0 is unimpactful for Ottens Ext. but becomes im- 

ortant for SMAHIC Ext. once β0 is included in the formulation. 

ince these terms are multiplicative, it is reasonable to think that 

hey would have some influence on each other. The included salt 

ependence of β adds another dimension to this interaction, be- 

ause n does not have ties to the salt concentration. While these 

xamples help elucidate the inner workings of these isotherm for- 

alisms, higher-order sensitivity analyses would provide a more 

etailed understanding and are a worthy consideration for future 

nvestigation. 

To better understand the contributions of the isotherm param- 

ters for Capto Adhere, the same approach of sensitivity analy- 

is was carried out, using only the BFI data. First-order sensitivity 

nalyses were again performed for each model and each isotherm 

arameter, shown in Fig. 10 C for column predictions and Fig. 10 D 

or batch fits. Here, the only models shown are those containing K s , 

ince the remaining models had extremely poor prediction scores 

or Capto Adhere. For the sensitivity in column predictions, the 

ost impactful parameters were K s , ν , and σ with K s having the 

ighest impact for the majority of the models shown. In contrast, 

or the batch fits ν had the greatest impact. One explanation for 

he importance of ν in the batch fits may be its impact on the 

nitial slope of the adsorption isotherm which may be less impor- 

ant in the column simulations. Importantly, all the parameters ex- 

licitly describing hydrophobic interaction stoichiometry were less 

nfluential. This further highlights the importance of the K s pa- 
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Fig. 10. Scatter plot of first-order sensitivity scores for each isotherm parameter in each model. Capto MMC BNL sensitivities: (A) column predictions; (B) batch isotherm 

fits. Capto Adhere BFI sensitivities: (C) column predictions; (D) batch isotherm fits. Note the differences in axes and that parameter symbols not visible for a given model 

are either not present in the formulation or are visually overlapping with another parameter symbol. 
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Fig. 11. Parametric plots showing the effect of K s parameter on linear binding 

trends (ln(k’) vs. salt concentration). Capto Adhere SMA K s BFI model is used with 

all parameters held constant except for K s , which is varied. 
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ameter for being able to capture the hydrophobic nature of the 

ystem and unique elution behavior stemming from the U-shaped 

sotherm. 

.11. Parametric study for K s parameter 

To better understand the dependence of isotherm shape and 

lution behavior on K s , a parametric study was performed to study 

-shape isotherm binding trends (retention factor k ′ vs. salt con- 

entration), elution peak shape, and elution recovery with respect 

o changing K s for the SMA K s model. To this end, k ′ was calculated

t discrete values of K s between 0 M 

−1 and 14 M 

−1 in steps of 1

 

−1 using Eq. (31) , 

 

′ = ϕ 

(
lim 

c→ 0 

q p 

c p 

)
= ϕK eq exp ( K s c s ) 

(
�

c s 

)ν

(31) 

hich can be derived from the definition of the retention factor 

54] and the equilibrium form of the SMA K s isotherm, where the 

hase ratio ϕ = ( 1 − ε t ) /ε t . In this analysis, while K s was changed,

he remaining isotherm parameters in the Capto Adhere SMA K s 

FI model were held constant as those used in Fig. 3 . Fig. 11 shows

he relationship between ln k ′ and salt concentration c s with re- 

pect to changing K s . At K s of zero (SMA model), there is a clearly

 monotonic trend in binding affinity with respect to salt concen- 

ration, which is expected for the SMA model. As the value of K s 

ncreases, the left side (zero salt) remains unchanged; however, 

he right side (high salt) continually increases. Since binding affin- 

ty grows exponentially with salt concentration according to the 
20
alue of K s , the relative influence of this parameter changes with 

alt concentration. At intermediate values of K s , a U-shaped bind- 

ng trend begins to form. Since the expected reason for the exis- 

ence of the U-shape here is a transition to a hydrophobic inter- 

ction dominated regime, K s is capable of capturing the effect of 

ydrophobic interactions. Thus, by changing K s alone, the modified 
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Fig. 12. Parametric plots showing the effect of K s parameter on LGE peak shape (A), dotted black line showing the linear NaOAc gradient, and elution recovery (B). Capto 

Adhere SMA K s BFI model is used with all parameters held constant except for K s which is varied. 
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MA model can be used to capture the effect of hydrophobic in- 

eractions at moderate to high salt concentrations. This capability 

llustrates the utility of the SMA K s model to capture a complex set 

f interactions while containing a minimized set of model param- 

ters. 

Expanding on the utility of the K s parameter, linear gradient 

imulations, shown in Fig. 12 A, were performed from 0 to 1.5 M 

aOAc in 30 CV at values of K s ranging from 0 to 14 M 

−1 with cal-

ulated elution recoveries shown in Fig. 12 B. As an implication of 

he U-shape isotherm behavior, a loss in protein recovery evidently 

ccurs at values of K s greater than 4 M 

−1 for this set of isotherm

arameters. This trend continues until K s of 12 M 

−1 where the elu- 

ion peak completely disappears, and no protein recovery is ob- 

ained. This effect can be explained by the exponential effect of 

 s resulting in significant growth of binding affinity and capacity 

ith respect to increasing salt concentration. Thus, it is clear that 

 s can be employed effectively as a means to model peak shape 

nd recovery loss in both MMCEX and MMAEX systems. 

.12. Advantages and limitations 

In addition to providing insight on isotherm selection, the 

orkflow and methods utilized in this work also provide a frame- 

ork for accurate prediction of column elution behavior using 

atch isotherm data. A key advantage of this approach is the ac- 

elerated timeline required for model development, in reference to 

odels based on column elution or breakthrough experiments. The 

igh-throughput nature of the batch experiments allows isotherms 

ver a full set of loading, salt, and pH conditions to be developed 

n the span of a few hours. Further, limiting the required loading 

onditions to the nonlinear region of the isotherm (BNL) further 

educes the experimental burden. In this study, the Capto MMC 

atch isotherm experiment was completed in under two hours 

ith the full set of isotherm data developed using only two 96- 

ell plates. In contrast, column linear elution experiments, typi- 

ally used for model construction, span roughly 1–2 h each with 

oughly ten experiments required to span an identical range of pH 

58] . For example, four sets of three linear gradient experiments 

erformed at different slopes, each set at a different pH, would re- 

ult in twelve experiments for four pH conditions (12–24 h total). 

ith stringent timelines common in early-stage process develop- 

ent, expedient model development workflows are crucial, sug- 

esting that batch isotherm experiments would be prudent to em- 

loy. Further, the computational expense of fitting batch isotherm 

ata is significantly lower than the cost of inverse fitting of col- 
21 
mn data because the equilibrium equations are algebraic in na- 

ure which are much easier (computationally) to solve compared 

o column simulations. 

A limitation of the current workflow presented in this study is 

hat obtaining high quality fits to batch isotherm data do not guar- 

ntee accurate elution predictions; thus, it is difficult to identify 

n appropriate isotherm formalism without having protein elution 

ata to validate the model. Accordingly, the authors recommend 

hat a small set of elution experiments be performed in addition 

o batch isotherm generation so that the model parameters can 

e validated with confidence. It is also prudent to perform mul- 

iple fits to the batch data so that variability in parameter fitting 

due non-deterministic global optimization schemes) does not neg- 

tively affect the quality of the generated regressed isotherm pa- 

ameters. 

While the modified SMA model was shown to be extremely 

seful for modeling elution behavior on Capto MMC, one could en- 

ision scenarios where more hydrophobic MMCEX ligands could 

esult in more complex adsorption behavior which may impact 

he utility of this isotherm as compared to the more complex 

sotherm formalisms. However, since Capto MMC is one of the 

ore hydrophobic MMCEX ligands that are commercially available, 

t is likely that the modified SMA model will perform well with 

any of the commercially available resins at typical pHs of op- 

ration. For cases when pH is particularly low (e.g., near the pKa 

f the weakly charged multimodal ligand—4.64 for Capto MMC 

68] ), the relative contribution of hydrophobic interactions is ex- 

ected to be greater in comparison to electrostatic interactions. 

hile the complex multimodal isotherms may be more appropri- 

te here, it is reasonable to expect that the extended SMA model 

ould still work well because the K s parameter was demonstrated, 

n the parametric study, to precisely account for hydrophobic 

nteractions. 

The focus with Capto Adhere in this study was centered around 

odeling of unique elution patterns on Capto Adhere caused by 

on-monotonic binding affinity trends. While this behavior was in- 

riguing, the conditions studied were limited to one pH condition. 

t has been shown by Lee et al. [16] that in MMAEX the U-shape

rend at high pH can transition to a monotonically increasing bind- 

ng with salt at low pH. As shown in the current work, U-shape 

ehavior was seen at pH values near the pI of the mAb. It follows 

hat a transition from purely HIC-like behavior to U-shape behav- 

or (i.e., increased binding at low ionic strength) must occur in this 

cenario as pH increases. It follows that accounting for this transi- 

ion will require pH to be included in the model formulation. 
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Expanding on this work by accounting for pH in the MMAEX 

ystem would open up useful avenues for model-based process de- 

elopment. One example of this is weak-partitioning chromatog- 

aphy (WPC)—a variant of flow-through mode where the eluent 

onditions (pH and ionic strength) are modulated to optimize the 

esin’s capacity for the impurity at the cost of some product loss 

o adsorption. This process with AEX or MMAEX is typically per- 

ormed at a pH below the pI, where pH and ionic strength are var-

ed to control the differential binding affinity between the prod- 

ct and impurity in the flow-through mode [86] . Processes such as 

PC in multimodal systems can be modeled flexibly by including 

oth pH and ionic strength in the model formulation. 

Identification of mechanistic models that can bridge these gaps 

ould greatly benefit the community and improve the understand- 

ng of multimodal chromatography. Another natural extension of 

his work would be to broaden the set of considered proteins, 

esins, and mobile phase conditions. To this end, future work in 

his space should extend the model identification effort s to include 

roteins with a diverse range of biophysical properties (particularly 

urface charge and hydrophobicity), ligands with a broader set of 

hemistries, and wider sets of mobile phase conditions (e.g., salt, 

H, and additional modifiers). 

. Conclusions 

Although column modeling has been extensively studied for 

ingle-mode chromatographic systems such as IEC and HIC, it has 

een explored to a much lesser extent for multimodal resins. The 

rimary reason for this discrepancy is, arguably, the lack of agree- 

ent of which isotherm model to employ for multimodal chro- 

atography. In this study, we have sought to address this issue 

y exploring an array of isotherm formalisms and characterizing 

hem based on their predictive abilities and relative complexities. 

he set of isotherm models studied were all based on the stoichio- 

etric displacement framework, with considerations for electro- 

tatic interactions, hydrophobic interactions, and thermodynamic 

ctivities. Isotherm parameters for each model were robustly de- 

ermined through twenty repeated fits to a set of mAb – Capto 

MC batch isotherm data spanning a wide range of loading, ionic 

trength, and pH as well as a set of mAb – Capto Adhere batch 

ata. The batch isotherm data were used in two varieties, covering 

he full range of loading (batch full isotherm—BFI), and contain- 

ng only the high concentration data points (batch no linear—BNL). 

redictive ability was characterized by the model’s capacity to cap- 

ure notable changes in salt gradient elution behavior with respect 

o pH for Capto MMC and to capture unique elution patterns with 

espect to gradient slope for Capto Adhere. For both resins, model 

erformance was measured using a scoring metric based on agree- 

ent in peak characteristics. Model complexity was also consid- 

red through use of the Akaike information criterion (AIC), which 

ncorporated the score distributions as well as a negative penalty 

ased on the number of model parameters. 

While the same approach was employed for both resins, key 

ifferences were found in the way the models should be employed 

or each resin. More specifically, for the MMCEX system, model 

erformance benefitted substantially from removal of low pro- 

ein concentration data (corresponding to the linear region of the 

sotherm). This was not the case for the MMAEX system, where re- 

oval of the low protein concentration batch data did not improve 

redictions—likely due to the qualitatively different shapes of the 

sotherms. Beyond the impact of loading conditions, key similari- 

ies were found in the top-performing isotherm models for both 

esins. Comparison of Capto MMC scores between models showed 

hat the extended SMA model (SMA with two activity coefficient 

erms) had the highest median score for the twenty column simu- 

ations performed using each set of isotherm parameters. Analysis 
22 
f the AIC model likelihoods (i.e., the probability that the model 

hould be selected) showed that the SMA model and its two mod- 

fied variants were the only models worth considering. Considera- 

ion of model performance from both a qualitative (visual agree- 

ent with experimental column elution curves) and quantitative 

tandpoint lead to the conclusion that the extended SMA isotherm, 

ontaining two modifications K s and K p (tied to an exponential de- 

endence on salt and protein concentration, respectively), was the 

op contender for modeling of the MMCEX system. Additionally, 

he more complex isotherm models that explicitly accounted for 

ydrophobic interaction stoichiometry showed no benefit over the 

MA models for this application. 

As for Capto Adhere, the SMA K s isotherm (containing K s but 

ot K p ) obtained highly accurate column predictions and fits to 

he batch data. The predictions obtained with isotherm models ex- 

licitly accounting for both electrostatic and hydrophobic interac- 

ions did not, like the MMCEX system, outperform the modified 

MA model, thereby suggesting that there was no added bene- 

t of the additional isotherm parameters. This finding was con- 

rmed with the scoring metric and the Akaike information crite- 

ion, which suggested that the modified SMA model should be se- 

ected due to it having fewer parameters. Further, sensitivity anal- 

ses performed for each isotherm parameter in each formalism il- 

ustrated that the K s parameter had a significant impact on both 

olumn predictions and batch fits. To provide further insight on 

his finding, a parametric study was conducted to illustrate the in- 

uence of K s on binding affinity and elution behavior. This investi- 

ation showed that K s provides facile control of U-shaped retention 

urves and elution peak shape. Overall, the effort s in this study led 

o identification of simplified isotherm formalisms capable of accu- 

ately predicting a wide range of column behavior for both a mul- 

imodal cation-exchange and multimodal anion-exchange resin. 
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